论文标题

多尺度椭圆pdes通过亚采样数据进行升级和函数近似

Multiscale Elliptic PDEs Upscaling and Function Approximation via Subsampled Data

论文作者

Chen, Yifan, Hou, Thomas Y.

论文摘要

多尺度PDE的数值升级与异质函数的散射数据近似之间存在密切的联系:选择用于得出上尺度方程的粗变量(前者)对应于用于近似的采样信息(后者)。因此,这两个问题都可以被认为是基于某些粗略数据恢复目标函数,这些数据是由升级算法人为选择的,或者由某些物理测量过程确定。然后,本文的目的是研究,在这种设置和特定的椭圆问题下,在计算预算有限的情况下,粗略数据的长度尺寸如何(我们将其称为次采样长度尺度)影响恢复的准确性。我们的分析和实验确定,减少子采样长度尺寸可能会提高准确性,这意味着在此计算限制的情况下,在该计算限制的情况下进行了粗粒或数据获取的指导标准,尤其是在数值同种化文献中实施赌注方法的直接见解。此外,如果目标函数没有足够的规律性,则将长度尺寸降低到零可能会导致近似误差的爆炸,这表明需要对目标函数进行更强大的先验假设。我们引入了一个奇异的重量函数来处理理论上和数值。这项工作阐明了粗略数据的长度,计算成本,目标函数的规律性以及近似值和数值模拟的准确性。

There is an intimate connection between numerical upscaling of multiscale PDEs and scattered data approximation of heterogeneous functions: the coarse variables selected for deriving an upscaled equation (in the former) correspond to the sampled information used for approximation (in the latter). As such, both problems can be thought of as recovering a target function based on some coarse data that are either artificially chosen by an upscaling algorithm, or determined by some physical measurement process. The purpose of this paper is then to study that, under such a setup and for a specific elliptic problem, how the lengthscale of the coarse data, which we refer to as the subsampled lengthscale, influences the accuracy of recovery, given limited computational budgets. Our analysis and experiments identify that, reducing the subsampling lengthscale may improve the accuracy, implying a guiding criterion for coarse-graining or data acquisition in this computationally constrained scenario, especially leading to direct insights for the implementation of the Gamblets method in the numerical homogenization literature. Moreover, reducing the lengthscale to zero may lead to a blow-up of approximation error if the target function does not have enough regularity, suggesting the need for a stronger prior assumption on the target function to be approximated. We introduce a singular weight function to deal with it, both theoretically and numerically. This work sheds light on the interplay of the lengthscale of coarse data, the computational costs, the regularity of the target function, and the accuracy of approximations and numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源