论文标题

Ancillae热水化自动选择后自动选择

Automatic Post-selection by Ancillae Thermalisation

论文作者

Wright, Lewis, Barratt, Fergus, Dborin, James, Booth, George H., Green, Andrew G.

论文摘要

不能通过纯粹的统一量子进化来执行诸如数据分类和确定哈密顿量的地面的任务。取而代之的是,必须利用测量过程的固有的非军事。选择后及其扩展提供了一种方法。但是,它们使时间资源效率低下 - 典型的计算可能需要$ O(2^m)$测量$ M $ QUBITS才能达到所需的准确性。我们提出了一种受征征热假说启发的方法,该方法利用了子系统上诱导的测量非线性。 $ M $ Ancillae Qubits上的选择后取代是通过追踪$ O(\logε/ \ log(1-p))$(其中P是成功测量的概率)获得与后选择后相同的准确性。我们在量子感知和相位估计算法上演示了该方案。该方法对于涉及超导电路的当前量子计算机尤其有利。

Tasks such as classification of data and determining the groundstate of a Hamiltonian cannot be carried out through purely unitary quantum evolution. Instead, the inherent non-unitarity of the measurement process must be harnessed. Post-selection and its extensions provide a way to do this. However they make inefficient use of time resources -- a typical computation might require $O(2^m)$ measurements over $m$ qubits to reach a desired accuracy. We propose a method inspired by the eigenstate thermalisation hypothesis, that harnesses the induced non-linearity of measurement on a subsystem. Post-selection on $m$ ancillae qubits is replaced with tracing out $O(\logε/ \log(1-p))$ (where p is the probability of a successful measurement) to attain the same accuracy as the post-selection circuit. We demonstrate this scheme on the quantum perceptron and phase estimation algorithm. This method is particularly advantageous on current quantum computers involving superconducting circuits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源