论文标题
在某些基于和非缔合的代数结构中的决定因素和限制系统
Determinants and Limit Systems in some Idempotent and Non-Associative Algebraic Structure
论文作者
论文摘要
本文考虑了一个基本的和对称的代数结构以及一些密切相关的概念。引入了一个特殊的决定因素概念,并针对源自Hadamard Matrix产品的一类极限系统得出了Cramer公式,我们给出了通过有限数量的一系列超平面的代数形式。因此,对于具有非负条品的最大时间系统产生了一些标准结果。还分析了两个方面系统的情况。另外,考虑到极限的特征值概念。结果表明,可以构建特殊的半连续正规化多项式,以找到具有非负条品的矩阵的特征值。
This paper considers an idempotent and symmetrical algebraic structure as well as some closely related concept. A special notion of determinant is introduced and a Cramer formula is derived for a class of limit systems derived from the Hadamard matrix product and we give the algebraic form of a sequence of hyperplanes passing through a finite number of points. Thereby, some standard results arising for Max-Times systems with nonnegative entries appear as a special case. The case of two sided systems is also analyzed. In addition, a notion of eigenvalue in limit is considered. It is shown that one can construct a special semi-continuous regularized polynomial to find the eigenvalues of a matrix with nonnegative entries.