论文标题

使用自动编码器(FINTA)进行拖拉术过滤

Filtering in tractography using autoencoders (FINTA)

论文作者

Legarreta, Jon Haitz, Petit, Laurent, Rheault, François, Theaud, Guillaume, Lemaire, Carl, Descoteaux, Maxime, Jodoin, Pierre-Marc

论文摘要

当前的脑白质纤维跟踪技术显示出许多问题,包括:生成大量的流线,这些流线无法准确地描述潜在的解剖结构;提取基础扩散信号不支持的流线;以及代表性不足的一些纤维种群。在本文中,我们描述了一种基于自动编码器的新型学习方法,以从扩散MRI拖拉术中过滤流线,从而获得更可靠的片段图。我们的方法被称为FINTA(使用自动编码器进行过滤)使用原始的,未标记的拖拉图来训练自动编码器,并学习对脑流的强大表示。然后使用这种嵌入使用最近的邻居算法过滤不需要的流线样本。我们对合成和体内人脑扩散MRI拖拉学数据的实验获得的精度得分超过了测试集的90 \%阈值。结果表明,与常规,基于解剖学的方法和回收最新方法相比,FINTA具有出色的过滤性能。此外,我们证明可以将FINTA应用于部分片段图,而无需更改框架。我们还表明,所提出的方法在不同的跟踪方法和数据集上延伸得很好,并且显着缩短了大型(> 1 m流线)的计算时间。这项工作共同提出了基于自动编码器的拖拉术中的新深度学习框架,该框架为白质过滤和捆绑提供了一种灵活而强大的方法,可以增强术语和连接分析。

Current brain white matter fiber tracking techniques show a number of problems, including: generating large proportions of streamlines that do not accurately describe the underlying anatomy; extracting streamlines that are not supported by the underlying diffusion signal; and under-representing some fiber populations, among others. In this paper, we describe a novel autoencoder-based learning method to filter streamlines from diffusion MRI tractography, and hence, to obtain more reliable tractograms. Our method, dubbed FINTA (Filtering in Tractography using Autoencoders) uses raw, unlabeled tractograms to train the autoencoder, and to learn a robust representation of brain streamlines. Such an embedding is then used to filter undesired streamline samples using a nearest neighbor algorithm. Our experiments on both synthetic and in vivo human brain diffusion MRI tractography data obtain accuracy scores exceeding the 90\% threshold on the test set. Results reveal that FINTA has a superior filtering performance compared to conventional, anatomy-based methods, and the RecoBundles state-of-the-art method. Additionally, we demonstrate that FINTA can be applied to partial tractograms without requiring changes to the framework. We also show that the proposed method generalizes well across different tracking methods and datasets, and shortens significantly the computation time for large (>1 M streamlines) tractograms. Together, this work brings forward a new deep learning framework in tractography based on autoencoders, which offers a flexible and powerful method for white matter filtering and bundling that could enhance tractometry and connectivity analyses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源