论文标题

高斯自旋状态的量子相估计算法

Quantum Phase Estimation Algorithm with Gaussian Spin States

论文作者

Pezzè, Luca, Smerzi, Augusto

论文摘要

量子相估计(QPE)是量子计算中最重要的子例程之一。在一般应用中,当前的QPE算法要么遭受指数时间过载,要么需要一组 - 众所周知的易碎 - GHz状态。到目前为止,这些限制阻止了QPE以外的QPE证明。在这里,我们提出了一种新的QPE算法,该算法随时间线性缩放,并通过高斯旋转状态(GSS)实现。 GSS具有富有弹性,并且是在各种平台中通过实验创建的,从数百个离子到数百万个冷/超低中性原子。我们表明,我们的协议达到了QPE灵敏度克服了以前的界限,包括使用GHz状态获得的界限,并且对几种噪声和谐波来源具有耐药性。我们的工作为QPE的现实量子优势演示以及原子挤压状态进行量子计算的应用铺平了道路。

Quantum phase estimation (QPE) is one of the most important subroutines in quantum computing. In general applications, current QPE algorithms either suffer an exponential time overload or require a set of - notoriously quite fragile - GHZ states. These limitations have prevented so far the demonstration of QPE beyond proof-of-principles. Here we propose a new QPE algorithm that scales linearly with time and is implemented with a cascade of Gaussian spin states (GSS). GSS are renownedly resilient and have been created experimentally in a variety of platforms, from hundreds of ions up to millions of cold/ultracold neutral atoms. We show that our protocol achieves a QPE sensitivity overcoming previous bounds, including those obtained with GHZ states, and is robustly resistant to several sources of noise and decoherence. Our work paves the way toward realistic quantum advantage demonstrations of the QPE, as well as applications of atomic squeezed states for quantum computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源