论文标题
基于PISO的二阶二阶方法
A symmetry-preserving second-order time-accurate PISO-based method
论文作者
论文摘要
本文介绍了一种新的保守对称性对称性的二阶时间准确性的压力效率耦合,用于在非结构化的共处网格上求解不可压缩的Navier-Stokes方程。这种隐式时间步进的新方法是保守对称性对称性的增量压力投影方法的延伸,用于显式时间步进和Trias等人的非结构化同层网格。 (2014)。为了评估和比较这两种方法,我们已经在开源代码OpenFOAM中的一个统一求解器中实现了它们。我们将这两种方法与屠夫图表结合在一起,用于一个明确和对角线的runge-kutta时间方案。我们使用Taylor-Green Vortex和LID驱动的空腔流量验证案例评估了已实施离散方法的能源保护特性以及所选Runge-Kutta方案的时间一致性。 尽管两种实施的方法均基于对称性的离散化,但我们表明,当直接从泊松方程直接求解总压力时,这两种方法仍会产生少量的数值耗散。这种数值耗散主要是由$ O(ΔTΔH^2)$的相应压力误差引起的。当使用增量压力方法时,从泊松方程求解压力校正时,压力误差将减少到$ O(ΔT^2ΔH^2)$,从而产生更好的保护特性:然后两种方法都有有效保守性。此外,我们得出的结论是,当压力泊松方程是基于$ O(ΔTΔH^2)$的压力误差所致时,所有选定的显式和隐式较高时间方案都将时间顺序降低至大约一个。
A new conservative symmetry-preserving second-order time-accurate PISO-based pressure-velocity coupling for solving the incompressible Navier-Stokes equations on unstructured collocated grids is presented in this paper. This new method for implicit time stepping is an extension of the conservative symmetry-preserving incremental-pressure projection method for explicit time stepping and unstructured collocated meshes of Trias et al. (2014). In order to assess and compare both methods, we have implemented them within one unified solver in the open source code OpenFOAM. We combine both methods with a Butcher tableau for a family of explicit and diagonally implicit Runge-Kutta temporal schemes. We assess the energy conservation properties of the implemented discretisation methods and the temporal consistency of the selected Runge-Kutta schemes using Taylor-Green vortex and lid-driven cavity flow test cases. Although both implemented methods are based on a symmetry-preserving discretisation, we show that both methods still produce a small amount of numerical dissipation when the total pressure is directly solved from a Poisson equation. This numerical dissipation is mainly caused by the corresponding pressure error which is of $O(Δt Δh^2)$. When an incremental-pressure approach is used, where a pressure correction is solved from a Poisson equation, the pressure error reduces to $O(Δt^2 Δh^2)$, yielding better conservation properties: both methods are then effectively fully-conservative. Furthermore, we conclude that all selected explicit and implicit higher order temporal schemes suffer from a reduction of the temporal order to approximately one when the pressure Poisson equation is based on the total pressure due to the presence of a pressure error of $O(Δt Δh^2)$.