论文标题

BGM:构建动态指导图,而没有视觉图像进行轨迹预测

BGM: Building a Dynamic Guidance Map without Visual Images for Trajectory Prediction

论文作者

Xia, Beihao, Wong, Conghao, Li, Heng, Chen, Shiming, Peng, Qinmu, You, Xinge

论文摘要

视觉图像通常包含环境的信息背景,从而有助于预测代理的行为。但是,由于分别固定语义,它们几乎不会对代理人的实际行为施加动态影响。为了解决此问题,我们提出了一个名为BGM的确定性模型,以构建一个指导图来表示动态语义,该语义绕过了为每个代理使用视觉图像以反映不同时期活动的视觉图像。我们首先在接近电流的时期内将所有代理的活动记录在现场,以构建指导图,然后将其馈送到上下文中CNN以获取其上下文功能。我们采用历史轨迹编码器来提取轨迹特征,然后将它们与上下文特征结合在一起,作为基于社会能源的轨迹解码器的输入,从而获得了满足社会规则的预测。实验表明,BGM在两个广泛使用的ETH和UCY数据集上实现了最新的预测准确性,并处理了更复杂的方案。

Visual images usually contain the informative context of the environment, thereby helping to predict agents' behaviors. However, they hardly impose the dynamic effects on agents' actual behaviors due to the respectively fixed semantics. To solve this problem, we propose a deterministic model named BGM to construct a guidance map to represent the dynamic semantics, which circumvents to use visual images for each agent to reflect the difference of activities in different periods. We first record all agents' activities in the scene within a period close to the current to construct a guidance map and then feed it to a Context CNN to obtain their context features. We adopt a Historical Trajectory Encoder to extract the trajectory features and then combine them with the context feature as the input of the social energy based trajectory decoder, thus obtaining the prediction that meets the social rules. Experiments demonstrate that BGM achieves state-of-the-art prediction accuracy on the two widely used ETH and UCY datasets and handles more complex scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源