论文标题

通过明确的动作学习,可推广和可解释的对话生成

Generalizable and Explainable Dialogue Generation via Explicit Action Learning

论文作者

Huang, Xinting, Qi, Jianzhong, Sun, Yu, Zhang, Rui

论文摘要

面向任务的对话的响应生成同时隐式优化了两个目标:任务完成和语言质量。有条件的响应生成是一种有效的方法,可以更好地优化这两个目标。这样的方法依赖于昂贵的系统动作注释。为了减轻行动注释的需求,引入了潜在的动作学习以将每种话语映射到潜在的表示。但是,这种方法容易依赖训练数据,因此限制了概括能力。为了解决这个问题,我们建议学习自然语言动作,将话语表示为单词的跨度。这种明确的动作表示通过语言的组成结构促进了概括。它还实现了可解释的生成过程。我们提出的无监督方法学习了一个记忆组件,将系统话语汇总到短范围内。为了进一步促进紧凑的动作表示形式,我们提出了一项辅助任务,该任务将状态注释作为使用内存组件的汇总对话上下文。我们提出的方法在MultiWoz上优于潜在的动作基线,这是一个基准的多域数据集。

Response generation for task-oriented dialogues implicitly optimizes two objectives at the same time: task completion and language quality. Conditioned response generation serves as an effective approach to separately and better optimize these two objectives. Such an approach relies on system action annotations which are expensive to obtain. To alleviate the need of action annotations, latent action learning is introduced to map each utterance to a latent representation. However, this approach is prone to over-dependence on the training data, and the generalization capability is thus restricted. To address this issue, we propose to learn natural language actions that represent utterances as a span of words. This explicit action representation promotes generalization via the compositional structure of language. It also enables an explainable generation process. Our proposed unsupervised approach learns a memory component to summarize system utterances into a short span of words. To further promote a compact action representation, we propose an auxiliary task that restores state annotations as the summarized dialogue context using the memory component. Our proposed approach outperforms latent action baselines on MultiWOZ, a benchmark multi-domain dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源