论文标题

测量无转发的非直角ARTIN组的等效分类

Measure equivalence classification of transvection-free right-angled Artin groups

论文作者

Horbez, Camille, Huang, Jingyin

论文摘要

我们证明,如果两个无反射的右角artin组是等效的,那么它们具有同构延伸图。结果,当且仅当它们是同构时,两个具有有限外部自动构成组的右角aRTIN组是等效的。这匹配了准时分类。 然而,与准偶像法问题相反,我们观察到,没有两个原因,在最强的含义上,没有直角的Artin组是衡量等效性的超级精神,原因有两个。首先,右角Artin组$ g $始终是相当于在同一定义图上无限可计式组的任何图形产品。其次,当$ g $是nonabelian时,$ g $的萨尔维蒂综合体的通用封面的自动形态群总是包含无限生成的(非均匀)晶格。

We prove that if two transvection-free right-angled Artin groups are measure equivalent, then they have isomorphic extension graphs. As a consequence, two right-angled Artin groups with finite outer automorphism groups are measure equivalent if and only if they are isomorphic. This matches the quasi-isometry classification. However, in contrast with the quasi-isometry question, we observe that no right-angled Artin group is superrigid for measure equivalence in the strongest possible sense, for two reasons. First, a right-angled Artin group $G$ is always measure equivalent to any graph product of infinite countable amenable groups over the same defining graph. Second, when $G$ is nonabelian, the automorphism group of the universal cover of the Salvetti complex of $G$ always contains infinitely generated (non-uniform) lattices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源