论文标题
Lipschitz连续的高空曲面具有规定的曲率和双曲线空间中的渐近边界
Lipschitz Continuous Hypersurfaces with Prescribed Curvature and Asymptotic Boundary in Hyperbolic Space
论文作者
论文摘要
我们证明,在某些假设下,在双曲线空间中,无限大度的魏因丁曲率和渐近边界的规定,在弱的意义上存在完整的局部Lipschitz连续性高表面。
We prove the existence of a complete locally Lipschitz continuous hypersurface in weak sense with prescribed Weingarten curvature and asymptotic boundary at infinity in hyperbolic space under certain assumptions.