论文标题
切线空间的限制到可定义的集合
Limits of tangent spaces to definable sets
论文作者
论文摘要
我们通过将切线锥中的一组特殊射线表征到当时的集合并研究了这些射线沿这些射线的一组切线限制集,从而研究了任何O最低结构中的一个切线限制集。将给出一些确定特殊射线的标准。本文的主要结果概括为O-timal设置和任意维度,即O'Shea的主要结果 - WILSON涉及$ \ Mathbb r^3 $的代数表面。
We study the set of tangent limits at a given point to a set definable in any o-minimal structure by characterizing the set of exceptional rays in the tangent cone to the set at that point and investigating the set of tangent limits along these rays. Several criteria for determining exceptional rays will be given. The main results of the paper generalize, to the o-minimal setting and to arbitrary dimension, the main results of O'Shea--Wilson which deals with algebraic surfaces in $\mathbb R^3$.