论文标题

高分辨率3D医学图像的基于记忆效率的基于GAN的域翻译

Memory-efficient GAN-based Domain Translation of High Resolution 3D Medical Images

论文作者

Uzunova, Hristina, Ehrhardt, Jan, Handels, Heinz

论文摘要

由于其巨大的计算需求,目前很少在大尺寸的3D医学图像上应用生成的对抗网络(GAN)。目前的工作提出了一种基于多尺度贴片的GAN方法,用于通过以记忆效率的方式生成高分辨率的3D医学图像量来建立未配对的域翻译。启用记忆有效图像生成的关键思想是首先生成图像的低分辨率版本,然后生成恒定大小的贴片,但依次增长的分辨率。为了避免补丁工具并包含全局信息,补丁的生成是根据先前分辨率量表的贴片进行的。那些多尺度的gan经过训练,可以从图像草图中生成现实的图像,以便执行未配对的域翻译。这允许保留测试数据的拓扑并生成训练域数据的外观。域翻译方案的评估是在大小155x240x240和胸部CTS的大脑MRI上进行的,大小高达512x512x512。与常见的基于补丁的方法相比,多分辨率方案可以实现更好的图像质量并防止贴片人工制品。此外,它可以确保恒定的GPU内存需求独立于图像大小,从而可以生成任意的大图像。

Generative adversarial networks (GANs) are currently rarely applied on 3D medical images of large size, due to their immense computational demand. The present work proposes a multi-scale patch-based GAN approach for establishing unpaired domain translation by generating 3D medical image volumes of high resolution in a memory-efficient way. The key idea to enable memory-efficient image generation is to first generate a low-resolution version of the image followed by the generation of patches of constant sizes but successively growing resolutions. To avoid patch artifacts and incorporate global information, the patch generation is conditioned on patches from previous resolution scales. Those multi-scale GANs are trained to generate realistically looking images from image sketches in order to perform an unpaired domain translation. This allows to preserve the topology of the test data and generate the appearance of the training domain data. The evaluation of the domain translation scenarios is performed on brain MRIs of size 155x240x240 and thorax CTs of size up to 512x512x512. Compared to common patch-based approaches, the multi-resolution scheme enables better image quality and prevents patch artifacts. Also, it ensures constant GPU memory demand independent from the image size, allowing for the generation of arbitrarily large images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源