论文标题

关于互惠滑轮的共同体

On the cohomology of reciprocity sheaves

论文作者

Binda, Federico, Rülling, Kay, Saito, Shuji

论文摘要

在本文中,我们展示了Chow对应关系对互惠滑轮共同体的作用。为此,我们证明了许多结构性结果,例如投影束公式,爆炸公式,吉赛因序列以及适当的推动力的存在。通过这种方式,我们恢复并概括了Hodge Sheaves和Hodge Witt Sheaves的共同体学的类似陈述。 我们将一般理论的几个应用提供给经典研究的问题。在这些应用中,我们构建了平稳的投射品种和障碍物的新的birational不变性,从而从互惠滑轮的共同体中构建了零循环。

In this paper we show the existence of an action of Chow correspondences on the cohomology of reciprocity sheaves. In order to do so, we prove a number of structural results, such as a projective bundle formula, a blow-up formula, a Gysin sequence, and the existence of proper pushforward. In this way we recover and generalize analogous statements for the cohomology of Hodge sheaves and Hodge-Witt sheaves. We give several applications of the general theory to problems which have been classically studied. Among these applications, we construct new birational invariants of smooth projective varieties and obstructions to the existence of zero-cycles of degree one from the cohomology of reciprocity sheaves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源