论文标题

推荐系统中的偏见和DEBIA:调查和未来方向

Bias and Debias in Recommender System: A Survey and Future Directions

论文作者

Chen, Jiawei, Dong, Hande, Wang, Xiang, Feng, Fuli, Wang, Meng, He, Xiangnan

论文摘要

尽管近年来见证了有关推荐系统(RS)的研究论文的快速增长,但大多数论文都专注于发明机器学习模型以更好地适合用户行为数据。但是,用户行为数据是观察性的,而不是实验性的。这使得数据中广泛存在各种偏见,包括但不限于选择偏见,位置偏见,暴露偏见和受欢迎程度偏见。盲目拟合数据而不考虑固有的偏见会导致许多严重的问题,例如,离线评估和在线指标之间的差异,损害了对建议服务的用户满意度和信任等。将大量的研究模型转化为实际的改进,高度紧迫地探索了必要时偏见的影响。在审查考虑卢比偏见的论文时,我们发现,令人惊讶的是,研究相当分散,缺乏系统的组织。术语``偏见''在文献中被广泛使用,但其定义通常是模糊的,甚至在各个论文之间不一致。这激发了我们对RS偏见的现有工作进行系统的调查。在本文中,我们首先在推荐中总结了七种类型的偏见以及它们的定义和特征。然后,我们提供分类法来定位并组织有关建议依据的现有工作。最后,我们确定了一些开放的挑战,并设想了一些未来的方向,希望激发有关这一重要而较少调查的主题的更多研究工作。可以在\ url {https://github.com/jiawei-chen/recdebiasing}中找到本次调查中审查的词汇摘要。

While recent years have witnessed a rapid growth of research papers on recommender system (RS), most of the papers focus on inventing machine learning models to better fit user behavior data. However, user behavior data is observational rather than experimental. This makes various biases widely exist in the data, including but not limited to selection bias, position bias, exposure bias, and popularity bias. Blindly fitting the data without considering the inherent biases will result in many serious issues, e.g., the discrepancy between offline evaluation and online metrics, hurting user satisfaction and trust on the recommendation service, etc. To transform the large volume of research models into practical improvements, it is highly urgent to explore the impacts of the biases and perform debiasing when necessary. When reviewing the papers that consider biases in RS, we find that, to our surprise, the studies are rather fragmented and lack a systematic organization. The terminology ``bias'' is widely used in the literature, but its definition is usually vague and even inconsistent across papers. This motivates us to provide a systematic survey of existing work on RS biases. In this paper, we first summarize seven types of biases in recommendation, along with their definitions and characteristics. We then provide a taxonomy to position and organize the existing work on recommendation debiasing. Finally, we identify some open challenges and envision some future directions, with the hope of inspiring more research work on this important yet less investigated topic. The summary of debiasing methods reviewed in this survey can be found at \url{https://github.com/jiawei-chen/RecDebiasing}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源