论文标题
翻滚磁性微型机器人的动态模拟引导设计
Dynamic Simulation-Guided Design of Tumbling Magnetic Microrobots
论文作者
论文摘要
在小规模上的机器人设计是一个基于反复的过程,这是昂贵且耗时的。很少有动态仿真工具可以准确地预测不受限制的微型机器人在基板上移动时的运动或性能。在较小的长度尺度下,粘附和摩擦的影响(随表面积缩放)变得更加明显。因此,刚性的身体动态模拟器隐含地假设可以将两个物体之间的接触建模为点接触是不合适的。在本文中,我们提出了模拟微型机器人运动的技术,在机器人和底物之间可以间歇性和非点接触。我们使用这些技术来研究不同形状的小型机器人的运动,并选择了用于改善运动性能的最佳形状。使用有关线性速度,最大攀岩倾斜角度和微型机器人轨迹的实验数据验证了仿真结果。制造具有改进几何形状的微型机器人,但制造过程中的局限性导致意外的制造错误和材料/尺寸规模调整。开发的仿真模型能够纳入这些局限性并模仿它们对微型机器人运动的影响,从而再现了翻滚微型机器人的实验行为,从而进一步展示了具有这种动态模型的有效性。
Design of robots at the small scale is a trial-and-error based process, which is costly and time-consuming. There are few dynamic simulation tools available to accurately predict the motion or performance of untethered microrobots as they move over a substrate. At smaller length scales, the influence of adhesion and friction, which scales with surface area, becomes more pronounced. Thus, rigid body dynamic simulators, which implicitly assume that contact between two bodies can be modeled as point contact are not suitable. In this paper, we present techniques for simulating the motion of microrobots where there can be intermittent and non-point contact between the robot and the substrate. We use these techniques to study the motion of tumbling microrobots of different shapes and select shapes that are optimal for improving locomotion performance. Simulation results are verified using experimental data on linear velocity, maximum climbable incline angle, and microrobot trajectory. Microrobots with improved geometry were fabricated, but limitations in the fabrication process resulted in unexpected manufacturing errors and material/size scale adjustments. The developed simulation model is able to incorporate these limitations and emulate their effect on the microrobot's motion, reproducing the experimental behavior of the tumbling microrobots, further showcasing the effectiveness of having such a dynamic model.