论文标题

有许多提示在线线性优化

Online Linear Optimization with Many Hints

论文作者

Bhaskara, Aditya, Cutkosky, Ashok, Kumar, Ravi, Purohit, Manish

论文摘要

我们研究了在线线性优化(OLO)问题,在该问题中,在做出决定之前,在每轮中为学习者提供了对$ k $“提示”向量的访问。在这种情况下,我们设计了一种算法,每当存在与成本向量有正相关的$ k $提示的凸组合时,都会获得对数遗憾。这大大扩展了仅考虑$ k = 1 $的情况的先前工作。为此,我们开发一种方法来结合许多任意的Olo算法,以使对数的遗憾仅比事后最初算法的最低遗憾在对数方面差。这个结果具有独立的兴趣。

We study an online linear optimization (OLO) problem in which the learner is provided access to $K$ "hint" vectors in each round prior to making a decision. In this setting, we devise an algorithm that obtains logarithmic regret whenever there exists a convex combination of the $K$ hints that has positive correlation with the cost vectors. This significantly extends prior work that considered only the case $K=1$. To accomplish this, we develop a way to combine many arbitrary OLO algorithms to obtain regret only a logarithmically worse factor than the minimum regret of the original algorithms in hindsight; this result is of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源