论文标题
如何以及为什么使用实验数据评估观察性因果推断的方法
How and Why to Use Experimental Data to Evaluate Methods for Observational Causal Inference
论文作者
论文摘要
从观察数据中推断因果关系的方法对于许多科学领域,包括医学,经济学和社会科学是至关重要的。这些方法的各种理论特性已被证明,但是经验评估仍然是一个挑战,这在很大程度上是由于缺乏已知治疗效果的观察数据集。我们描述和分析了从随机对照试验(OSRCT)中描述和分析一种使用随机对照试验(RCT)数据评估因果推理方法的方法。该方法可用于创建具有相应无偏见的治疗效果估计值的构建的观测数据集,从而大大增加了可用于因果推理方法的经验评估的数据集数量。我们表明,在预期的情况下,OSRCT创建了数据集,这些数据集与从经验数据集中随机采样的数据集,其中所有潜在的结果可用。然后,我们对37个数据集(从RCT绘制)以及模拟器,现实世界计算系统以及使用合成响应变量增强的观察数据集对37个数据集的七种因果推理方法进行了大规模评估。我们在比较来自不同来源的数据时发现了显着的性能差异,这表明在评估任何因果推理方法时使用来自各种来源的数据的重要性。
Methods that infer causal dependence from observational data are central to many areas of science, including medicine, economics, and the social sciences. A variety of theoretical properties of these methods have been proven, but empirical evaluation remains a challenge, largely due to the lack of observational data sets for which treatment effect is known. We describe and analyze observational sampling from randomized controlled trials (OSRCT), a method for evaluating causal inference methods using data from randomized controlled trials (RCTs). This method can be used to create constructed observational data sets with corresponding unbiased estimates of treatment effect, substantially increasing the number of data sets available for empirical evaluation of causal inference methods. We show that, in expectation, OSRCT creates data sets that are equivalent to those produced by randomly sampling from empirical data sets in which all potential outcomes are available. We then perform a large-scale evaluation of seven causal inference methods over 37 data sets, drawn from RCTs, as well as simulators, real-world computational systems, and observational data sets augmented with a synthetic response variable. We find notable performance differences when comparing across data from different sources, demonstrating the importance of using data from a variety of sources when evaluating any causal inference method.