论文标题
LES关闭术语的机器学习框架
A machine learning framework for LES closure terms
论文作者
论文摘要
在目前的工作中,我们探讨了人工神经网络(ANN)仅从粗尺度数据中预测大型涡模拟(LES)的闭合项的能力。为此,我们为LES闭合模型得出了一个一致的框架,并特别强调了基于内置离散化的过滤器和数值近似错误的结合。我们研究了隐式滤波器类型,这些类型的灵感来自不连续的Galerkin和有限体积方案的解决方案表示,并模仿离散操作员的行为,以及一个全局的傅立叶截止滤波器作为典型的显式LES滤波器的代表。在完美的LES框架中,我们从直接的数值模拟结果中计算出不同的LES滤波器函数的确切闭合项,这些函数腐烂了均匀的各向同性湍流。具有多层感知器(MLP)或门控复发单元(GRU)体系结构的多个ANN经过训练,以仅从粗尺度输入数据中预测计算出的闭合项。对于给定的应用程序,GRU体系结构在准确性方面显然优于MLP网络,同时在网络的预测和所有考虑的过滤器功能的确切闭合项之间达到99.9%的互相关。 GRU网络还显示出跨不同LES过滤器和分辨率良好的概括。因此,本研究可以看作是研究LE的基于数据的建模方法的起点,该方法不仅包括物理封闭项,还包括隐式过滤的LES中的离散作用。
In the present work, we explore the capability of artificial neural networks (ANN) to predict the closure terms for large eddy simulations (LES) solely from coarse-scale data. To this end, we derive a consistent framework for LES closure models, with special emphasis laid upon the incorporation of implicit discretization-based filters and numerical approximation errors. We investigate implicit filter types, which are inspired by the solution representation of discontinuous Galerkin and finite volume schemes and mimic the behaviour of the discretization operator, and a global Fourier cutoff filter as a representative of a typical explicit LES filter. Within the perfect LES framework, we compute the exact closure terms for the different LES filter functions from direct numerical simulation results of decaying homogeneous isotropic turbulence. Multiple ANN with a multilayer perceptron (MLP) or a gated recurrent unit (GRU) architecture are trained to predict the computed closure terms solely from coarse-scale input data. For the given application, the GRU architecture clearly outperforms the MLP networks in terms of accuracy, whilst reaching up to 99.9% cross-correlation between the networks' predictions and the exact closure terms for all considered filter functions. The GRU networks are also shown to generalize well across different LES filters and resolutions. The present study can thus be seen as a starting point for the investigation of data-based modeling approaches for LES, which not only include the physical closure terms, but account for the discretization effects in implicitly filtered LES as well.