论文标题

深度学习管道,用于识别肌肉骨骼超声中的运动单位

A deep learning pipeline for identification of motor units in musculoskeletal ultrasound

论文作者

Ali, Hazrat, Umander, Johannes, Rohlén, Robin, Grönlund, Christer

论文摘要

超声成像提供来自大部分肌肉的信息。最近已经显示,超声超声成像可用于使用盲源分离来记录和分析单个MUS的机械响应。在这项工作中,我们提出了一种替代方法 - 一种深度学习管道,以识别超声图像序列中的主动MUS,包括对其领土的分割以及其机械响应的信号估计(Twitch Train)。我们使用模拟数据训练和评估模型,模仿具有重叠领土和部分同步激活模式的数十个激活MUS的复杂激活模式。使用缓慢的融合方法(基于3D CNN),我们将时空图像序列数据转换为2D表示,并应用深度神经网络结构进行分割。接下来,我们采用第二个深神经网络体系结构进行信号估计。结果表明,所提出的管道可以有效地识别单个MUS,估计其领土,并在低收缩力下估算其Twitch火车信号。即使将超声图像序列转换为2D表示,该框架可以保留时空的一致性和MU活动的机械响应信息,以兼容更传统的计算机视觉和图像处理技术。所提出的管道可能有助于在低力水平的自愿骨骼肌收缩的超声图像序列中识别整个肌肉中同时活跃的MUS。

Ultrasound imaging provides information from a large part of the muscle. It has recently been shown that ultrafast ultrasound imaging can be used to record and analyze the mechanical response of individual MUs using blind source separation. In this work, we present an alternative method - a deep learning pipeline - to identify active MUs in ultrasound image sequences, including segmentation of their territories and signal estimation of their mechanical responses (twitch train). We train and evaluate the model using simulated data mimicking the complex activation pattern of tens of activated MUs with overlapping territories and partially synchronized activation patterns. Using a slow fusion approach (based on 3D CNNs), we transform the spatiotemporal image sequence data to 2D representations and apply a deep neural network architecture for segmentation. Next, we employ a second deep neural network architecture for signal estimation. The results show that the proposed pipeline can effectively identify individual MUs, estimate their territories, and estimate their twitch train signal at low contraction forces. The framework can retain spatio-temporal consistencies and information of the mechanical response of MU activity even when the ultrasound image sequences are transformed into a 2D representation for compatibility with more traditional computer vision and image processing techniques. The proposed pipeline is potentially useful to identify simultaneously active MUs in whole muscles in ultrasound image sequences of voluntary skeletal muscle contractions at low force levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源