论文标题

MINC连续体和概括的平面嵌入

Planar embeddings of Minc's continuum and generalizations

论文作者

Anušić, Ana

论文摘要

我们表明,如果$ f \ colon i \ to i $是分段单调的,后严格有限,最终在本地上进行,则在x = \ uder fludftarrow {\ lim}(i,f)中的每个点$ x \ in x = \ nufferftarrow中,存在$ x $的$ x $的平均嵌入$ x $,因此可访问$ x $。特别是,来自[问题19 p的Minc Continuum $ x_m $中的每个点$ x $。 335在《连续理论》中:特别会议论文集,以纪念小萨姆·纳德勒(Sam B. v。230,纽约:Marcel Dekker。]可以访问。所有构造的嵌入都是薄的,即可以被连接在平面中的任意小链覆盖。

We show that if $f\colon I\to I$ is piecewise monotone, post-critically finite, and locally eventually onto, then for every point $x\in X=\underleftarrow{\lim}(I,f)$ there exists a planar embedding of $X$ such that $x$ is accessible. In particular, every point $x$ in Minc's continuum $X_M$ from [Question 19 p. 335 in Continuum theory : proceedings of the special session in honor of Professor Sam B. Nadler, Jr.'s 60th birthday, Lecture notes in pure and applied mathematics; v. 230, New York: Marcel Dekker.] can be embedded accessibly. All constructed embeddings are thin, i.e. can be covered by an arbitrary small chain of open sets which are connected in the plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源