论文标题
培训差异自动编码器先验的对比度学习方法
A Contrastive Learning Approach for Training Variational Autoencoder Priors
论文作者
论文摘要
变异自动编码器(VAE)是具有许多域中应用的强大生成模型之一。但是,他们难以产生高质量的图像,尤其是当从先前获得样品而没有任何回火时。 VAE的生成质量差的一种解释是先前的孔问题:先前的分布无法匹配总近似后部。由于这种不匹配,在潜在空间中存在高密度的区域,该区域在先验下没有与任何编码的图像相对应。这些区域的样本被解码为损坏的图像。为了解决这个问题,我们提出了一个基于能量的先验,该先验是由基本先验分布和重新加权因素的产物定义的,旨在使基地更接近骨料后部。我们通过噪声对比估计来训练重新加权因子,并将其推广到具有许多潜在变量组的层次结构VAE。我们的实验证实,提出的噪声对比先验可以通过MNIST,CIFAR-10,CELEBA 64和CELEBA HQ 256数据集的大幅度提高最先进的VAE的生成性能。我们的方法很简单,可以应用于各种VAE,以提高其先前分布的表现力。
Variational autoencoders (VAEs) are one of the powerful likelihood-based generative models with applications in many domains. However, they struggle to generate high-quality images, especially when samples are obtained from the prior without any tempering. One explanation for VAEs' poor generative quality is the prior hole problem: the prior distribution fails to match the aggregate approximate posterior. Due to this mismatch, there exist areas in the latent space with high density under the prior that do not correspond to any encoded image. Samples from those areas are decoded to corrupted images. To tackle this issue, we propose an energy-based prior defined by the product of a base prior distribution and a reweighting factor, designed to bring the base closer to the aggregate posterior. We train the reweighting factor by noise contrastive estimation, and we generalize it to hierarchical VAEs with many latent variable groups. Our experiments confirm that the proposed noise contrastive priors improve the generative performance of state-of-the-art VAEs by a large margin on the MNIST, CIFAR-10, CelebA 64, and CelebA HQ 256 datasets. Our method is simple and can be applied to a wide variety of VAEs to improve the expressivity of their prior distribution.