论文标题
质量聚集过程中的运输和波动:流动性驱动集群
Transport and fluctuations in mass aggregation processes: mobility driven clustering
论文作者
论文摘要
我们计算一系列离散位点环上的大量保守质量聚集过程中的散装扩散系数和电导率。这些过程涉及质量的碎裂和碎片化,它们在与邻近群众接触时散布并聚集。我们发现,即使没有显微镜时间可逆性,系统也满足了爱因斯坦的关系,该关系将电导率与批量波动的比率和大量扩张系数联系起来。有趣的是,当聚集在碎裂上占主导地位时,电导率或等效地,移动性就会增强。根据爱因斯坦的关系,电导率的增强导致质量波动较大,这意味着系统中的{\ it迁移率驱动群集}。实际上,在某个参数状态下,我们证明了电导率在临界密度之外的差异,这表明了过去观察到的冷凝转换的发作。在与Bose-Einstein凝结的惊人相似性中,冷凝水的形成以及不同的电导率,因此在这些非平衡系统中是动态的“超荧光样”过渡的基础。值得注意的是,在所有情况下,散装扩散系数仍然有限。我们的分析结果与模拟相当一致。
We calculate the bulk-diffusion coefficient and the conductivity in a broad class of conserved-mass aggregation processes on a ring of discrete sites. These processes involve chipping and fragmentation of masses, which diffuse around and aggregate upon contact with their neighboring masses. We find that, even in the absence of microscopic time reversibility, the systems satisfy an Einstein relation, which connects the ratio of the conductivity and the bulk-diffusion coefficient to mass fluctuation. Interestingly, when aggregation dominates over chipping, the conductivity or, equivalently, the mobility, gets enhanced. The enhancement in conductivity, in accordance with the Einstein relation, results in large mass fluctuations, implying a {\it mobility driven clustering} in the system. Indeed, in a certain parameter regime, we demonstrate that the conductivity diverges beyond a critical density, signaling the onset of a condensation transition observed in the past. In a striking similarity to Bose-Einstein condensation, the condensate formation along with the diverging conductivity thus underlies a dynamic "superfluidlike" transition in these nonequilibrium systems. Notably, the bulk-diffusion coefficient remains finite in all cases. Our analytic results are in a quite good agreement with simulations.