论文标题

Curi:在不确定性下学习生产概念学习的基准

CURI: A Benchmark for Productive Concept Learning Under Uncertainty

论文作者

Vedantam, Ramakrishna, Szlam, Arthur, Nickel, Maximilian, Morcos, Ari, Lake, Brenden

论文摘要

在无限多个概念的空间中,人类可以在实质性的不确定性下学习和推理,包括结构化的关系概念(“具有相同颜色的对象的场景”和通过目标定义的临时类别(“可能落在一个人的头上”)。相反,标准分类基准:1)仅考虑一组固定的类别标签,2)请勿评估组成概念学习,而3)请勿明确捕获不确定性下的推理概念。我们介绍了一个新的几弹,元学习基准,不确定性(curi)的组成推理以弥合这一差距。 Curi评估了生产性和系统概括的不同方面,包括对解剖,生产性概括,学习布尔操作,可变结合等的抽象理解。重要的是,它还定义了独立于模型的“组成性差距”,以评估沿每个轴沿这些轴的过度分布的难度。一系列建模选择的广泛评估涵盖了不同的方式(图像,图架和声音),分裂,特权辅助概念信息以及负面的选择,揭示了对所提出的任务进行建模的实质性范围。所有代码和数据集将在线提供。

Humans can learn and reason under substantial uncertainty in a space of infinitely many concepts, including structured relational concepts ("a scene with objects that have the same color") and ad-hoc categories defined through goals ("objects that could fall on one's head"). In contrast, standard classification benchmarks: 1) consider only a fixed set of category labels, 2) do not evaluate compositional concept learning and 3) do not explicitly capture a notion of reasoning under uncertainty. We introduce a new few-shot, meta-learning benchmark, Compositional Reasoning Under Uncertainty (CURI) to bridge this gap. CURI evaluates different aspects of productive and systematic generalization, including abstract understandings of disentangling, productive generalization, learning boolean operations, variable binding, etc. Importantly, it also defines a model-independent "compositionality gap" to evaluate the difficulty of generalizing out-of-distribution along each of these axes. Extensive evaluations across a range of modeling choices spanning different modalities (image, schemas, and sounds), splits, privileged auxiliary concept information, and choices of negatives reveal substantial scope for modeling advances on the proposed task. All code and datasets will be available online.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源