论文标题

TEV Cosmic Ray Bump:Epsilon Indi或Epsilon Eridani Star的信息?

The TeV Cosmic Ray Bump: a Message from Epsilon Indi or Epsilon Eridani Star?

论文作者

Malkov, Mikhail A., Moskalenko, Igor V.

论文摘要

来自0.3--30电视的宇宙射线(CR)频谱中最近观察到的颠簸可能是由于恒星弓休克引起的,它会重新计算\ emph {emph {emph {treexisting} cr,从而进一步沿着磁场线进一步传播到太阳。在途中,这些粒子产生了Iroshnikov-Kraichnan(I-K)的湍流,可控制它们的传播并维持颠簸。 {\ it Ad hoc}凸起形状的拟合需要六个可调参数。我们的模型不需要不需要,仅取决于\ emph {我们使用拟合的三个物理未知数。}这些是冲击马赫数,$ m $,大小,$ l _ {\ perp} $,以及与之的距离,$ζ_ {\ text {obs}}} $。他们总共定义了凸起刚度$ r_ {0} $。使用$ M $$ \ $ 1.5---1.6和$ r_ {0} $ 4 \ $ 4.4电视,该型号以$ \ $ \ $ \ $ \ $ \ $ \ $ 0.08 \%$ $精度拟合数据。贴合的拟合要求需要模型预测的I-K频谱,并排除替代方案。这些合适的属性使意外协议极不可能。反过来,$ r_ {0} $和$ m $从fit中衍生而来的距离尺寸%($ζ_ {\ rm obs} $$$ $$ l _ {\ perp} $)的关系:$ζ_ {\ rm {\ rm {\ rm obs} $(pc)$ \ sim $$ 10^{2} \ sqrt {l _ {\ perp}(\ text {pc})} $。对于足够大的弓冲击,$ l _ {\ perp} $$ = $$ 10^{ - 3} $$ - $$ 10^{ - 2} $ pc,我们找到$ζ_ {\ rm obs} $$ obs} $$ = $ 3--10 PC的距离。该范围内的三个有前途的恒星是:Scholz在6.8 PC上的星星,3.6 PC的Epsilon Indi和3.2 PC的Epsilon Eridani。根据它们当前的位置和速度,我们建议Epsilon Indi和Epsilon Eridani可以产生观察到的光谱凸起。此外,Epsilon Eridani的位置仅为$ \ sim $$ 6.7^{\ circ} $在太阳邻域中的磁场方向上,这也改变了CR到达方向分布。鉴于这些恒星的距离,凸起的外观可能会在相对较短的时间内发生变化。

A recently observed bump in the cosmic ray (CR) spectrum from 0.3--30 TV is likely caused by a stellar bow shock that reaccelerates \emph{preexisting} CRs, which further propagate to the Sun along the magnetic field lines. Along their way, these particles generate an Iroshnikov-Kraichnan (I-K) turbulence that controls their propagation and sustains the bump. {\it Ad hoc} fitting of the bump shape requires six adjustable parameters. Our model requires none, merely depending on \emph{three physical unknowns that we constrain using the fit.} These are the shock Mach number, $M$, its size, $l_{\perp}$, and the distance to it, $ζ_{\text{obs}}$. Altogether, they define the bump rigidity $R_{0}$. With $M$$\approx$1.5--1.6 and $R_{0}$$\approx$4.4 TV, the model fits the data with $\approx$$0.08\%$ accuracy. The fit critically requires the I-K spectrum predicted by the model and rules out the alternatives. These fit's attributes make an accidental agreement highly unlikely. In turn, $R_{0}$ and $M$ derived from the fit impose the distance-size %($ζ_{\rm obs}$$-$$l_{\perp}$) relation on the shock: $ζ_{\rm obs}$(pc)$\sim$$10^{2}\sqrt{l_{\perp}(\text{pc})}$. For sufficiently large bow shocks, $l_{\perp}$$=$$10^{-3}$$-$$10^{-2}$ pc, we find the distance of $ζ_{\rm obs}$$=$3--10 pc. Three promising stars in this range are: Scholz's Star at 6.8 pc, Epsilon Indi at 3.6 pc, and Epsilon Eridani at 3.2 pc. Based on their current positions and velocities, we propose that Epsilon Indi and Epsilon Eridani can produce the observed spectral bump. Moreover, Epsilon Eridani's position is only $\sim$$6.7^{\circ}$ off of the magnetic field direction in the solar neighborhood, which also changes the CR arrival direction distribution. Given the proximity of these stars, the bump appearance may change in a relatively short time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源