论文标题
$(3)$旋转在代表狄拉克方程的代表中创建的中间效运物种
The intermediate fermionic species created by $SO(3)$ rotation in the representation of the Dirac equation
论文作者
论文摘要
狄拉克方程如何取决于$γ$矩阵的选择的问题部分在文献中得到了部分解决和探讨。在本文中,我们通过考虑$γ$矩阵的一般形式来关注这个问题,并将所得的旋转$ \ frac {1} {2} {2} $ fermions作为\ textit {InterMediate fermion物种}(ifs)。通过检查IFS的属性,我们发现所有物种在参数空间(3)$相似性转换中相互转换,这是$γ$矩阵的实体。许多属性(例如特征值问题和提升)进行了IF测试。我们还发现产生Majorana fermions的子代表,这是$ u(1)$ group的同构。
The question of how does the Dirac equation depend on the choice of the $γ$ matrices has partially been addressed and explored in the literature. In this paper we focus on this question by considering a general form of $γ$ matrices, and call the resulting spin $\frac{1}{2}$ fermions as \textit{intermediate fermion species} (IFS). By inspecting the properties of IFS, we find that all species transform to each other by a $SO(3)$ similarity transformation in the space of parameters, that are the entities of the $γ$ matrices. Many properties, like eigenvalue problem and boost are tested for IFS. We find also sub-representations that generate Majorana fermions, which is isomorphism to $U(1)$ group.