论文标题

卷积神经网络体系结构如何学习反对性和颜色调整

How Convolutional Neural Network Architecture Biases Learned Opponency and Colour Tuning

论文作者

Harris, Ethan, Mihai, Daniela, Hare, Jonathon

论文摘要

最近的工作表明,通过在第二层中引入瓶颈来改变卷积神经网络(CNN)体系结构可以产生学习功能的变化。要完全理解这种关系,需要一种定量比较训练的网络的方法。电生理学和心理物理学领域已经开发了许多允许这种比较的视觉系统的方法。受这些方法的启发,我们提出了一种用于获得卷积神经元的空间和色调曲线的方法,该方法可用于根据其空间和颜色对立的细胞对细胞进行分类。我们对具有不同深度和瓶颈宽度的一系列CNN执行这些分类。我们的关键发现是,具有瓶颈的网络显示出一个强大的功能组织:瓶颈层中几乎所有细胞都在空间上和颜色对手均变为颜色对手,瓶颈后层中的细胞在层中都是非op子的。颜色调整数据可以进一步用于对网络编码颜色的编码形成丰富的了解。作为一个具体的演示,我们表明没有瓶颈的较浅的网络学习一个复杂的非线性色彩系统,而具有紧密瓶颈的更深层网络在瓶颈层中学习一个简单的通道对手代码。我们进一步开发了一种为受过训练的CNN获得色相敏感性曲线的方法,该曲线可实现高水平的见解,以补充颜色调整数据的低水平发现。我们继续在不同条件下培训一系列网络,以确定讨论结果的鲁棒性。最终,我们的方法和发现与先前的艺术结合在一起,增强了我们解释受过训练的CNN的能力,并增强了我们对建筑与学识渊博之间联系的理解。所有实验的代码均可在https://github.com/ecs-vlc/opponency上获得。

Recent work suggests that changing Convolutional Neural Network (CNN) architecture by introducing a bottleneck in the second layer can yield changes in learned function. To understand this relationship fully requires a way of quantitatively comparing trained networks. The fields of electrophysiology and psychophysics have developed a wealth of methods for characterising visual systems which permit such comparisons. Inspired by these methods, we propose an approach to obtaining spatial and colour tuning curves for convolutional neurons, which can be used to classify cells in terms of their spatial and colour opponency. We perform these classifications for a range of CNNs with different depths and bottleneck widths. Our key finding is that networks with a bottleneck show a strong functional organisation: almost all cells in the bottleneck layer become both spatially and colour opponent, cells in the layer following the bottleneck become non-opponent. The colour tuning data can further be used to form a rich understanding of how colour is encoded by a network. As a concrete demonstration, we show that shallower networks without a bottleneck learn a complex non-linear colour system, whereas deeper networks with tight bottlenecks learn a simple channel opponent code in the bottleneck layer. We further develop a method of obtaining a hue sensitivity curve for a trained CNN which enables high level insights that complement the low level findings from the colour tuning data. We go on to train a series of networks under different conditions to ascertain the robustness of the discussed results. Ultimately, our methods and findings coalesce with prior art, strengthening our ability to interpret trained CNNs and furthering our understanding of the connection between architecture and learned representation. Code for all experiments is available at https://github.com/ecs-vlc/opponency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源