论文标题
EcultingδScutistar ao serpentis的物理性质
Physical Nature of the Eclipsing δ Scuti Star AO Serpentis
论文作者
论文摘要
我们介绍了从我们的$ bv $光度和高分辨率的光谱观测中脱落的二进制二进制Ao ser的绝对属性,这些观察值是在2017年4月至2017年5月之间进行的。对两个组件的径向速度(RVS)进行了测量,并测量了有效的温度和预测的温度和预测的旋转速度。 8,820 $ \ pm $ 62 K和$ v_1 \ sin I_ {1} $ = 90 $ \ pm $ 18 km s $^{ - 1} $,通过将观察到的光谱与kurucz型号进行比较。通过对光和RV曲线的同时分析,确定了AO Ser的准确基本参数。主要和次要组件的质量和半径为$ m_1 $ = 2.55 $ \ pm $ 0.09 m $ $ _ \ odot $和$ r_1 $ = 1.64 $ \ pm $ 0.02 r $ _ \ odot $ $ _ \ odot $和$ m_2 $ _2 $ = 0.49 $ \ pm $ 0.02 m $ _ $ _ $ _ 0.0 $ _ 0.0 $ \ od2 $ \ od2 $ \ od2 $ r_ \ osot $ r_ \ od2 $ r_ \ od2 $ \ ro_ 2 1 1. r $ _ \ odot $。进行了Eclipse缩减的光残差的多频率分析。结果,我们检测到两个$ f_1 $ = 21.852天的频率$^{ - 1} $和$ f_2 $ = 23.484天$^{ - 1} $。人力资源图和脉冲特征上的进化位置表明,主要恒星是具有径向基本模式的$δ$ SCT脉动器。另一方面,相对进化的次要因其自身的质量而超大。
We present the absolute properties of the eclipsing binary AO Ser with a pulsating component from our $BV$ photometric and high-resolution spectroscopic observations, which were performed between April and May 2017. The radial velocities (RVs) for both components were measured, and the effective temperature and projected rotational velocity of the primary star were determined to be $T_{\rm eff,1}$ = 8,820 $\pm$ 62 K and $v_1 \sin i_{1}$ = 90 $\pm$ 18 km s$^{-1}$, respectively, by comparing the observed spectrum with the Kurucz models. The accurate fundamental parameters of AO Ser were determined by a simultaneous analysis of the light and RV curves. The masses and radii of the primary and secondary components are $M_1$ = 2.55 $\pm$ 0.09 M$_\odot$ and $R_1$ = 1.64 $\pm$ 0.02 R$_\odot$ and $M_2$ = 0.49 $\pm$ 0.02 M$_\odot$ and $R_2$ = 1.38 $\pm$ 0.02 R$_\odot$, respectively. Multiple frequency analyses for the eclipse-subtracted light residuals were conducted. As a result, we detected two frequencies of $f_1$ = 21.852 days$^{-1}$ and $f_2$ = 23.484 days$^{-1}$. The evolutionary position on the HR diagram and the pulsational characteristics indicate that the primary star is a $δ$ Sct pulsator with a radial fundamental mode. On the other hand, the relatively evolved secondary is oversized for its own mass.