论文标题

拜占庭的地球运动

Byzantine Geoconsensus

论文作者

Oglio, Joseph, Hood, Kendric, Sharma, Gokarna, Nesterenko, Mikhail

论文摘要

我们定义并调查了嵌入在$ d $维平面上的$ n $过程的共识问题,$ d \ geq 2 $,我们称之为{\ em emeoconsensus}问题。这些过程具有独特的坐标,可以通过口头消息相互通信。与单独考虑拜占庭的过程的文献相反,被认为是有限大小的凸故障面积$ f $涵盖的所有过程都是拜占庭的,并且在故障面积中可能有一个或多个过程。就像在文献中,正确的过程不知道哪些过程是拜占庭的,也假定正确的过程不知道故障面积位置。我们证明,如果在一个是故障区域的最多三个区域都可以覆盖所有过程,则不可能进行地理传感器。 考虑到二维嵌入在建设性方面,对于$ m \ geq 1 $故障面积$ f $与直径$ d $的任意形状$ f $,我们提出了一种共识算法,可容忍$ f \ f \ leq n-(2m+1)$ byzantine流程,规定比$ 3 $ 3 $搭配$ 3 $ $ 3 $ $ $ d $ d $ d $ d $。对于带有侧面$ \ ell $的Square $ f $,我们提供了一种共识算法,该算法可以提高此成对距离的要求,并容忍$ f \ leq n-1500万$ byzantine流程,因为所有过程均受至少2200万美元$ $ axis覆盖的覆盖范围,其大小与$ f $相同。对于圆形$ f $ $ \ ell $的圆形$ f $,如果所有流程都涵盖了至少8500万美元的圆圈,则该算法可容忍$ f \ f \ leq n-57亿$ byzantine流程。然后,我们将这些结果扩展到故障和非故障区域的各种尺寸组合以及$ d $维的过程嵌入,$ d \ geq 3 $。

We define and investigate the consensus problem for a set of $N$ processes embedded on the $d$-dimensional plane, $d\geq 2$, which we call the {\em geoconsensus} problem. The processes have unique coordinates and can communicate with each other through oral messages. In contrast to the literature where processes are individually considered Byzantine, it is considered that all processes covered by a finite-size convex fault area $F$ are Byzantine and there may be one or more processes in a fault area. Similarly as in the literature where correct processes do not know which processes are Byzantine, it is assumed that the fault area location is not known to the correct processes. We prove that the geoconsensus is impossible if all processes may be covered by at most three areas where one is a fault area. Considering the 2-dimensional embedding, on the constructive side, for $M \geq 1$ fault areas $F$ of arbitrary shape with diameter $D$, we present a consensus algorithm that tolerates $f\leq N-(2M+1)$ Byzantine processes provided that there are $9M+3$ processes with pairwise distance between them greater than $D$. For square $F$ with side $\ell$, we provide a consensus algorithm that lifts this pairwise distance requirement and tolerates $f\leq N-15M$ Byzantine processes given that all processes are covered by at least $22M$ axis aligned squares of the same size as $F$. For a circular $F$ of diameter $\ell$, this algorithm tolerates $f\leq N-57M$ Byzantine processes if all processes are covered by at least $85M$ circles. We then extend these results to various size combinations of fault and non-fault areas as well as $d$-dimensional process embeddings, $d\geq 3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源