论文标题

UROD代数和W-Algebras的翻译

Urod algebras and Translation of W-algebras

论文作者

Arakawa, Tomoyuki, Creutzig, Thomas, Feigin, Boris

论文摘要

在这项工作中,我们介绍了与简单的Lie代数相关的Urod代数以及W-Algebras的翻译概念。通过表明量子量减少的量子与可集成表示的张紧,也就是说,对于$ v $和$ l $ a offine oftex代数以及与$ \ mathfrak {g mathfrak {g} $有关h_ {ds,f}^0(v)\ otimes l $,在左侧,drinfeld-sokolov减少是相对于$ \ wideHat {\ mathfrak {g}} $在$ v \ otimes l $上的对角线动作的。该证明是基于顶点代数的一些新建自动形态的建筑,这可能具有独立的兴趣。作为推论,我们获得了许多异常W-代数的模块的融合类别,我们可以构建各种角顶点代数。这项工作的主要动机是,$ a $的Urood代数提供了对著名的Nakajima-yoshioka爆炸方程的理论解释,用于$ \ Mathbb {Cp}^2 $的任意排名的$ \ Mathbb {Cp}^2 $的无框扭转束带的模量空间。

In this work, we introduce Urod algebras associated to simply-laced Lie algebras as well as the concept of translation of W-algebras. Both results are achieved by showing that the quantum Hamiltonian reduction commutes with tensoring with integrable representations, that is, for $V$ and $L$ an affine vertex algebra and an integrable affine vertex algebra associated with $\mathfrak{g}$, we have the vertex algebra isomorphism $H_{DS,f}^0(V\otimes L)\cong H_{DS,f}^0(V)\otimes L$, where in the left-hand-side the Drinfeld-Sokolov reduction is taken with respect to the diagonal action of $\widehat{\mathfrak{g}}$ on $V\otimes L$. The proof is based on some new constructionof automorphisms of vertex algebras, which may be of independent interest. As corollaries we get fusion categories of modules of many exceptional W-algebras and we can construct various corner vertex algebras. A major motivation for this work is that Urod algebras of type $A$ provide a representation theoretic interpretation of the celebrated Nakajima-Yoshioka blowup equations for the moduli space of framed torsion free sheaves on $\mathbb{CP}^2$ of an arbitrary rank.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源