论文标题

在第二类的局部局部O-最低结构中可以确定的函数

Functions definable in definably complete uniformly locally o-minimal structure of the second kind

论文作者

Fujita, Masato

论文摘要

我们研究了第二种密集线性有序的Abelian群(DCULOAS结构)的局部局部O-最低膨胀可定义的连续函数。 我们证明了Arzela-Ascoli定理的变体,用于均匀连续的可定义函数和以下断言:考虑参数化函数$ f:c \ times p \ rightarrow m $,与$ p $相对于$ p $。当$ f $不连续的$ f $不连续的集合的投影图像是尺寸小于$ \ dim p $时,当$ c $关闭和界限时。 此外,我们证明了具有可定义的Tietze扩展特性的Archimedean dculoas结构是O-Wimimal。在附录中,我们表明,当且仅当它拥有可确定的Tietze扩展属性时,订购组的O最低扩展不是半结合的。

We investigate continuous functions definable in a definably complete uniformly locally o-minimal expansion of the second kind of a densely linearly ordered abelian group (DCULOAS structure). We prove a variant of the Arzela-Ascoli theorem for uniformly continuous definable functions and the following assertion: Consider the parameterized function $f:C \times P \rightarrow M$ which is equi-continuous with respect to $P$. The projection image of the set at which $f$ is discontinuous to the parameter space $P$ is of dimension smaller than $\dim P$ when $C$ is closed and bounded. In addition, we demonstrate that an archimedean DCULOAS structure which enjoys definable Tietze extension property is o-minimal. In the appendix, we show that an o-minimal expansion of an ordered group is not semi-bounded if and only if it enjoys definable Tietze extension property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源