论文标题
低资源语言家庭双语词典归纳的广义约束方法
A Generalized Constraint Approach to Bilingual Dictionary Induction for Low-Resource Language Families
论文作者
论文摘要
缺乏或缺乏平行和可比的语料库使双语词典提取成为低资源语言的艰巨任务。事实证明,枢轴语言和同源识别方法可用于诱导这种语言的双语词典。我们通过从最近的基于枢轴的诱导技术扩展约束,提出基于约束的双语词典诱导,以实现密切相关的语言,并进一步使多个对称性假设循环能够达到transgraph中的更多同源。我们进一步识别同义同义词以获得多到多的翻译对。本文利用了四个数据集:一种奥地利语低资源语言和三种印欧语高资源语言。我们使用先前工作中的三种基于约束的方法,即从输入词典作为基线的笛卡尔产物产生的反向咨询方法和翻译对。我们使用精确度,召回和F得分的指标评估结果。我们可自定义的方法使用户可以通过各种启发式方法组合和对称性假设周期的数量来预测最佳的超参数(同源阈值和同义同义词阈值),以获得最高的F评分。与我们以前的基于约束的方法相比,我们提出的方法在精度和F评分方面具有统计学上的显着提高。结果表明,我们的方法证明了对其他双语词典创建方法进行补充的潜力,例如使用并行语料库使用平行语言来进行高资源语言,同时很好地处理低资源语言。
The lack or absence of parallel and comparable corpora makes bilingual lexicon extraction a difficult task for low-resource languages. The pivot language and cognate recognition approaches have been proven useful for inducing bilingual lexicons for such languages. We propose constraint-based bilingual lexicon induction for closely-related languages by extending constraints from the recent pivot-based induction technique and further enabling multiple symmetry assumption cycles to reach many more cognates in the transgraph. We further identify cognate synonyms to obtain many-to-many translation pairs. This paper utilizes four datasets: one Austronesian low-resource language and three Indo-European high-resource languages. We use three constraint-based methods from our previous work, the Inverse Consultation method and translation pairs generated from the Cartesian product of input dictionaries as baselines. We evaluate our result using the metrics of precision, recall and F-score. Our customizable approach allows the user to conduct cross-validation to predict the optimal hyperparameters (cognate threshold and cognate synonym threshold) with various combinations of heuristics and the number of symmetry assumption cycles to gain the highest F-score. Our proposed methods have statistically significant improvement of precision and F-score compared to our previous constraint-based methods. The results show that our method demonstrates the potential to complement other bilingual dictionary creation methods like word alignment models using parallel corpora for high-resource languages while well handling low-resource languages.