论文标题

打结的Tori不变的左旋河流

A Levine-Tristram invariant for knotted tori

论文作者

Ruberman, Daniel

论文摘要

Echeverria最近使用尺度理论进行单数连接,在同源性$ s^1 \ times s^3 $中引入了一种平滑嵌入式圆环。我们定义了这种嵌入式圆环的新拓扑不变,类似于结节的古典左旋 - 特里斯特拉姆不变。在三维的情况下,结上的单数连接数次数又重现了莱文 - 特里斯特拉姆不变。我们计算了许多嵌入的示例的不变性,并表明我们的拓扑不变与人们对Echeverria不变的期望相同。 Langte MA随后一般都表明了这一点。

Echeverria recently introduced an invariant for a smoothly embedded torus in a homology $S^1\times S^3$, using gauge theory for singular connections. We define a new topological invariant of such an embedded torus, analogous to the classical Levine-Tristram invariant of a knot. In the 3-dimensional situation, a count of singular connections on a knot complement reproduces the Levine-Tristram invariant. We compute the invariant for a number of examples embedded tori, and show that our topological invariant is the same as what one might expect from Echeverria's invariant. Langte Ma has subsequently shown this in general.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源