论文标题
ETA Carinae和Homunculus:远红外,亚毫米光谱线
Eta Carinae & the Homunculus: Far Infrared, Sub-millimeter Spectral Lines
论文作者
论文摘要
进化的巨大二进制恒星Eta Carinae发生了爆发性的质量损失事件,形成了复杂的双极遗体星云,具有数十个异常富含氮气和灰尘的太阳量。尽管人们期望存在重要的分子成分,但由于有限的距离进入远红外和强烈的热连续性,在观察到的检测中,发现检测受到了挑战。对原子和旋转分子过渡的光谱调查进行了使用Herschel空间天文台进行的,揭示了源自弹出物中的丰富宽发射线。选定PACS线的速度曲线与已知子结构良好相关:中心核心的H I; NH和弱[c ii]在Homunculus内;和[n II]的[n II]在Homunculus外部的快速移动结构中的排放。我们已经确定了从[O I],H I和18个单独的光C和O含碳分子(包括CO,CH,CH+和OH)以及一组宽的N含N含Nh,NH,NH+,N2H+,NH2,NH2,NH3,NH3,HCN,HCN,HNC,CN,CN和N2H++。其中一半是对于任何早期型巨大的恒星环境而言,新的检测是前所未有的。从五个分子及其同位素学估计的非常低的比率[12C/13C] LE 4。我们证明,由于强连续体引起的非LTE效应是显着的。丰度模式与碳和氧耗尽区域的线形成一致,并具有增强氮的增强功能,反映了爆发的恒星的进化状态,并有效地将CNO加工材料运输到外层。该结果为在巨大的恒星周围的极端物理和化学条件下在其进化的最后阶段对分子化学的进一步观察和理论研究提供了许多机会。
The evolved massive binary star Eta Carinae underwent eruptive mass loss events that formed the complex bi-polar Homunculus nebula harboring tens of solar masses of unusually nitrogen-rich gas and dust. Despite expectations for the presence of a significant molecular component to the gas, detections have been observationally challenged by limited access to the far-infrared and the intense thermal continuum. A spectral survey of the atomic and rotational molecular transitions was carried out with the Herschel Space Observatory, revealing a rich spectrum of broad emission lines originating in the ejecta. Velocity profiles of selected PACS lines correlate well with known substructures: H I in the central core; NH and weak [C II] within the Homunculus; and [N II] emissions in fast-moving structures external to the Homunculus. We have identified transitions from [O I], H I, and 18 separate light C- and O-bearing molecules including CO, CH, CH+, and OH, and a wide set of N-bearing molecules, NH, NH+, N2H+, NH2, NH3, HCN, HNC, CN, and N2H+. Half of these are new detections unprecedented for any early-type massive star environment. A very low ratio [12C/13C] LE 4 is estimated from five molecules and their isotopologues. We demonstrate that non-LTE effects due to the strong continuum are significant. Abundance patterns are consistent with line formation in regions of carbon and oxygen depletions with nitrogen enhancements, reflecting an evolved state of the erupting star with efficient transport of CNO-processed material to the outer layers. The results offer many opportunities for further observational and theoretical investigations of the molecular chemistry under extreme physical and chemical conditions around massive stars in their final stages of evolution.