论文标题
卷积自动编码器的嵌入层和图像群集的深度逆特征学习的多级特征学习
Multi-level Feature Learning on Embedding Layer of Convolutional Autoencoders and Deep Inverse Feature Learning for Image Clustering
论文作者
论文摘要
本文将多层次特征学习以及卷积自动编码器(CAE-ME)的嵌入层作为深层聚类的新方法。我们使用聚集聚类作为多级特征学习,在潜在特征空间上提供层次结构。结果表明,应用多级特征学习大大改善了基本的深卷积嵌入聚类(DCEC)。 CAE-MLE认为,与CAE的学习潜在特征同时同时聚集聚类的聚类损失。在以下在以前的逆特征学习中的作品中,我们表明,学习错误作为一般策略的表示形式可以应用于不同的深层聚类方法,并带来有希望的结果。我们在CAE-MLE上开发了深层特征学习(深度IFL),作为一种新的方法,可导致同一类别方法之间的最新结果。实验结果表明,CAE-ME改善了基本方法DCEC的结果,在两个著名的MNIST和USP的数据集上约为7%-14%。同样,这表明拟议的深层IFL将主要结果提高了约9%-17%。因此,与大多数现有技术相比,基于CAE-ME的CAE-ME和深层IFL的拟议方法都可以提高性能。所提出的方法基于基本的卷积自动编码器,即使与变异自动编码器或生成对抗网络相比,也可以取得出色的结果。
This paper introduces Multi-Level feature learning alongside the Embedding layer of Convolutional Autoencoder (CAE-MLE) as a novel approach in deep clustering. We use agglomerative clustering as the multi-level feature learning that provides a hierarchical structure on the latent feature space. It is shown that applying multi-level feature learning considerably improves the basic deep convolutional embedding clustering (DCEC). CAE-MLE considers the clustering loss of agglomerative clustering simultaneously alongside the learning latent feature of CAE. In the following of the previous works in inverse feature learning, we show that the representation of learning of error as a general strategy can be applied on different deep clustering approaches and it leads to promising results. We develop deep inverse feature learning (deep IFL) on CAE-MLE as a novel approach that leads to the state-of-the-art results among the same category methods. The experimental results show that the CAE-MLE improves the results of the basic method, DCEC, around 7% -14% on two well-known datasets of MNIST and USPS. Also, it is shown that the proposed deep IFL improves the primary results about 9%-17%. Therefore, both proposed approaches of CAE-MLE and deep IFL based on CAE-MLE can lead to notable performance improvement in comparison to the majority of existing techniques. The proposed approaches while are based on a basic convolutional autoencoder lead to outstanding results even in comparison to variational autoencoders or generative adversarial networks.