论文标题

低质量超声心动图中心肌梗塞的早期检测

Early Detection of Myocardial Infarction in Low-Quality Echocardiography

论文作者

Degerli, Aysen, Zabihi, Morteza, Kiranyaz, Serkan, Hamid, Tahir, Mazhar, Rashid, Hamila, Ridha, Gabbouj, Moncef

论文摘要

心肌梗死(MI)或通常称为心脏病发作,是全世界威胁生命的健康问题,每年有3240万人受到影响。 MI的早期诊断和治疗对于防止进一步的心脏组织损害或死亡至关重要。缺血的最早,最可靠的迹象是心室肌肉受影响部分的区域壁运动异常(RWMA)。超声心动图可以轻松,廉价和非侵入性表现出RWMA。在本文中,我们在低质量超声心动图中介绍了一种三相方法,用于早期MI检测:1)使用最先进的深度学习模型对整个左心室(LV)壁进行分割,2)通过特征工程分析分段的LV壁,以及3)早期MI检测。这项研究的主要贡献是从低质量的超声心动图,伪标记方法的高度精确分割,用于未经注释的LV Wall的地面形成以及第一个用于MI检测的公共超声心动图数据集(HMC-QU)*。此外,所提出的方法的输出可以显着帮助心脏病专家更好地评估LV壁特性。所提出的方法对LV墙分割的敏感性达到95.72%和99.58%的特异性,敏感性为85.97%,特异性为74.03%,HMC-QU数据集的MI检测精度为86.85%。 *基准HMC-QU数据集在存储库中公开共享https://www.kaggle.com/aysendegerli/hmcqu-dataset

Myocardial infarction (MI), or commonly known as heart attack, is a life-threatening health problem worldwide from which 32.4 million people suffer each year. Early diagnosis and treatment of MI are crucial to prevent further heart tissue damages or death. The earliest and most reliable sign of ischemia is regional wall motion abnormality (RWMA) of the affected part of the ventricular muscle. Echocardiography can easily, inexpensively, and non-invasively exhibit the RWMA. In this article, we introduce a three-phase approach for early MI detection in low-quality echocardiography: 1) segmentation of the entire left ventricle (LV) wall using a state-of-the-art deep learning model, 2) analysis of the segmented LV wall by feature engineering, and 3) early MI detection. The main contributions of this study are highly accurate segmentation of the LV wall from low-quality echocardiography, pseudo labeling approach for ground-truth formation of the unannotated LV wall, and the first public echocardiographic dataset (HMC-QU)* for MI detection. Furthermore, the outputs of the proposed approach can significantly help cardiologists for a better assessment of the LV wall characteristics. The proposed approach has achieved 95.72% sensitivity and 99.58% specificity for the LV wall segmentation, and 85.97% sensitivity, 74.03% specificity, and 86.85% precision for MI detection on the HMC-QU dataset. *The benchmark HMC-QU dataset is publicly shared at the repository https://www.kaggle.com/aysendegerli/hmcqu-dataset

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源