论文标题
与准二级驾驶的非绝热拓扑泵
Nonadiabatic Topological Energy Pumps with Quasiperiodic Driving
论文作者
论文摘要
我们得出了由$ d $ d $二维的晶格模型的拓扑分类,该晶格模型由$ d $不优量的音调驱动。在频率空间中映射到统一的$(d+d)$ - 维局部模型,揭示了没有静态类似物的异常局部拓扑阶段(ALTP)。尽管正式分类由$ d+d $确定,但每个altp的可观察签名取决于空间尺寸$ d $。对于每个$ d $,$ d+d = 3 $,我们确定了量化的循环电流和相应的拓扑边缘状态。驱动线($ d = 1 $)的边缘状态在驱动器之间起量化的非绝热泵的功能。我们设计了可实现多个拓扑类别的ALTP的准驱动量子和电线的混凝土模型。我们的结果为在驱动的低维系统中实验访问更高维度的ALTP提供了途径。
We derive a topological classification of the steady states of $d$-dimensional lattice models driven by $D$ incommensurate tones. Mapping to a unifying $(d+D)$-dimensional localized model in frequency space reveals anomalous localized topological phases (ALTPs) with no static analog. While the formal classification is determined by $d+D$, the observable signatures of each ALTP depend on the spatial dimension $d$. For each $d$, with $d+D=3$, we identify a quantized circulating current, and corresponding topological edge states. The edge states for a driven wire ($d=1$) function as a quantized, nonadiabatic energy pump between the drives. We design concrete models of quasiperiodically driven qubits and wires that achieve ALTPs of several topological classes. Our results provide a route to experimentally access higher dimensional ALTPs in driven low-dimensional systems.