论文标题

可喷涂的薄碳纳米纤维复合涂料,用于极端跳跃凝结性能

Sprayable Thin and Robust Carbon Nanofiber Composite Coating for Extreme Jumping Dropwise Condensation Performance

论文作者

Donati, Matteo, Lam, Cheuk Wing Edmond, Milionis, Athanasios, Sharma, Chander Shekhar, Tripathy, Abinash, Zendeli, Armend, Poulikakos, Dimos

论文摘要

金属表面上的水凝结对于多种能量转换过程至关重要。凝结传热效率的提高通常需要表面纹理和疏水性,通常是通过涂层实现的,以维持掉落的凝结。但是,这种表面处理面临最小涂层热阻力,增强涂料耐用性和可扩展制造的挑战。在这里,我们提出了薄(〜2μM)聚氟乙烯 - 碳纳米纤维纳米复合材料涂层,该涂层应对这些挑战并维持在高度要求的凝结条件下长时间结合诱导的跳跃液滴凝结。通过沉积亚微米厚的铝制引物层,通过改善底物粘附来实现涂料耐用性。聚氟乙烯基质中的碳纳米纤维会增加涂料的导热率并促进自发的表面纳米纹理,从而实现凝结物微滴体的超疏水性。涂料材料可以通过直接喷涂来沉积,从而确保多种底物的经济可伸缩性和多功能性。我们知道金属表面没有其他涂层,可以在111摄氏度的蒸汽剪切下在〜3 m s-1上在表面上流动的蒸汽剪切持续10小时,并额外凝结50小时。与常规的胶卷凝结相比,凝结传热系数的提高高达约900%。

Condensation of water on metallic surfaces is critical for multiple energy conversion processes. Enhancement in condensation heat transfer efficiency often requires surface texturing and hydrophobicity, usually achieved through coatings, to maintain dropwise condensation. However, such surface treatments face conflicting challenges of minimal coating thermal resistance, enhanced coating durability and scalable fabrication. Here we present a thin (~ 2 μm) polytetrafluoroethylene - carbon nanofiber nanocomposite coating which meets these challenges and sustains coalescence-induced jumping droplet condensation for extended periods under highly demanding condensation conditions. Coating durability is achieved through improved substrate adhesion by depositing a sub-micron thick aluminum primer layer. Carbon nanofibers in a polytetrafluoroethylene matrix increase coating thermal conductivity and promote spontaneous surface nano-texturing to achieve superhydrophobicity for condensate microdroplets. The coating material can be deposited through direct spraying, ensuring economical scalability and versatility for a wide range of substrates. We know of no other coating for metallic surfaces that is able to sustain jumping dropwise condensation under shear of steam at 111 degC flowing at ~ 3 m s-1 over the surface for 10 hours and dropwise condensation for an additional 50 hours. Up to ~ 900% improvement in condensation heat transfer coefficient is achieved compared to conventional filmwise condensation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源