论文标题

Copulagnn:旨在整合图形神经网络中图的代表性和相关作用

CopulaGNN: Towards Integrating Representational and Correlational Roles of Graphs in Graph Neural Networks

论文作者

Ma, Jiaqi, Chang, Bo, Zhang, Xuefei, Mei, Qiaozhu

论文摘要

图形结构的数据无处不在。但是,图表编码各种类型的信息,从而在数据表示中起不同的作用。在本文中,我们区分了\ textIt {表示{表示{相关}角色,该角色由节点级预测任务中扮演的角色,并研究了图形神经网络(GNN)模型如何有效地利用两种类型的信息。从概念上讲,代表性信息为模型构建更好的节点特征提供了指导。而相关信息表示节点成果之间的相关性在节点特征上有条件。通过模拟研究,我们发现许多流行的GNN模型无法有效利用相关信息。通过利用Copula的思想,这是描述多元随机变量之间依赖性的原则方法,我们提供了一个通用的解决方案。提出的Copula图神经网络(Copulagnn)可以采用广泛的GNN模型作为基本模型,并利用图表中存储的代表性和相关信息。对两种类型的回归任务的实验结果验证了所提出方法的有效性。

Graph-structured data are ubiquitous. However, graphs encode diverse types of information and thus play different roles in data representation. In this paper, we distinguish the \textit{representational} and the \textit{correlational} roles played by the graphs in node-level prediction tasks, and we investigate how Graph Neural Network (GNN) models can effectively leverage both types of information. Conceptually, the representational information provides guidance for the model to construct better node features; while the correlational information indicates the correlation between node outcomes conditional on node features. Through a simulation study, we find that many popular GNN models are incapable of effectively utilizing the correlational information. By leveraging the idea of the copula, a principled way to describe the dependence among multivariate random variables, we offer a general solution. The proposed Copula Graph Neural Network (CopulaGNN) can take a wide range of GNN models as base models and utilize both representational and correlational information stored in the graphs. Experimental results on two types of regression tasks verify the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源