论文标题
带有本地动作的顶点传递图,对称组有序对
Vertex-transitive graphs with local action the symmetric group on ordered pairs
论文作者
论文摘要
我们考虑一个有限,连接和简单的图$γ$,该$ $ g $承认了一个顶点的自动形态。在以下假设:对于所有$ x \ in V(γ)$中的所有$ x \,本地操作$ g_x^{γ(x)} $是订购对的$ \ mathrm {sym}(sym}(n)$的动作,我们表明$ g_x^{[3]} $ g_x^{[3]} $,是$ x $ x $ x $ x $ x $ x $ x $ x $ x $ x $ x $ x $ x $ x $
We consider a finite, connected and simple graph $Γ$ that admits a vertex-transitive group of automorphisms $G$. Under the assumption that, for all $x \in V(Γ)$, the local action $G_x^{Γ(x)}$ is the action of $\mathrm{Sym}(n)$ on ordered pairs, we show that the group $G_x^{[3]}$, the pointwise stabiliser of a ball of radius three around $x$, is trivial.