论文标题

简单地描述了大拉姆西学位的弗拉伊斯课程

Fraisse classes with simply characterized big Ramsey degrees

论文作者

Coulson, Rebecca, Dobrinen, Natasha, Patel, Rehana

论文摘要

我们制定了一个属性,以增强不交流的融合属性,并证明具有有限的关系语言中的每个Fraisse结构,最多有两个具有此属性的Arity的关系符号具有有限的大拉姆西学位,具有简单的特征。因此,任何这样的Fraisse结构都承认了一个很大的拉姆西结构。此外,我们在任意有限的关系语言中证明了每个Fraisse结构都无法满足此属性的能力。这项工作为拉姆西理论提供了一种简化而统一的方法,这些方法在一些看似不同的弗莱斯结构类别上。新颖性包括在Fraisse结构的初始段中以1型的1型编码树的新提出,以及对学位的直接表征,而无需吸引标准的“信封”方法。

We formulate a property strengthening the Disjoint Amalgamation Property and prove that every Fraisse structure in a finite relational language with relation symbols of arity at most two having this property has finite big Ramsey degrees which have a simple characterization. It follows that any such Fraisse structure admits a big Ramsey structure. Furthermore, we prove indivisibility for every Fraisse structure in an arbitrary finite relational language satisfying this property. This work offers a streamlined and unifying approach to Ramsey theory on some seemingly disparate classes of Fraisse structures. Novelties include a new formulation of coding trees in terms of 1-types over initial segments of the Fraisse structure, and a direct characterization of the degrees without appeal to the standard method of "envelopes".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源