论文标题

局部标签点校正,用于边缘检测重叠的宫颈细胞

Local Label Point Correction for Edge Detection of Overlapping Cervical Cells

论文作者

Liu, Jiawei, Fan, Huijie, Wang, Qiang, Li, Wentao, Tang, Yandong, Wang, Danbo, Zhou, Mingyi, Chen, Li

论文摘要

准确的标签对于监督深度学习方法至关重要。但是,几乎不可能准确和手动注释数千张图像,这导致大多数数据集的许多标记错误。我们提出了一种本地标签点校正(LLPC)方法,以提高边缘检测和图像分割任务的注释质量。我们的算法包含三个步骤:梯度引导点校正,点插值和局部点平滑。我们通过将带注释的点移至像素梯度峰来校正对象轮廓的标签。这可以提高边缘定位精度,但由于图像噪声的干扰,也会引起不厚的轮廓。因此,我们根据局部线性拟合设计了一种点平滑方法,以平滑校正的边缘。为了验证LLPC的有效性,我们构建了最大的重叠宫颈细胞边缘检测数据集(CCEDD),并通过我们的标签校正方法校正了更高的精度标签。我们的LLPC只需要设置三个参数,但是在多个网络上产生30-40 $ \%$的平均精度改进。定性和定量实验结果表明,我们的LLPC可以提高手动标签的质量以及重叠的细胞边缘检测的准确性。我们希望我们的研究能够大大提高标签校正以进行边缘检测和图像分割。我们将在https://github.com/nachifur/llpc上发布数据集和代码。

Accurate labeling is essential for supervised deep learning methods. However, it is almost impossible to accurately and manually annotate thousands of images, which results in many labeling errors for most datasets. We proposes a local label point correction (LLPC) method to improve annotation quality for edge detection and image segmentation tasks. Our algorithm contains three steps: gradient-guided point correction, point interpolation and local point smoothing. We correct the labels of object contours by moving the annotated points to the pixel gradient peaks. This can improve the edge localization accuracy, but it also causes unsmooth contours due to the interference of image noise. Therefore, we design a point smoothing method based on local linear fitting to smooth the corrected edge. To verify the effectiveness of our LLPC, we construct a largest overlapping cervical cell edge detection dataset (CCEDD) with higher precision label corrected by our label correction method. Our LLPC only needs to set three parameters, but yields 30-40$\%$ average precision improvement on multiple networks. The qualitative and quantitative experimental results show that our LLPC can improve the quality of manual labels and the accuracy of overlapping cell edge detection. We hope that our study will give a strong boost to the development of the label correction for edge detection and image segmentation. We will release the dataset and code at https://github.com/nachifur/LLPC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源