论文标题

广义的Bargmann Superalgebras

Generalised Bargmann Superalgebras

论文作者

Grassie, Ross

论文摘要

Bargmann代数和中央延伸的牛顿 - 霍克代数分别描述了平坦和弯曲的空间中巨大颗粒的非相对论对称性。这三个代数都是作为静态运动层谎言代数的通用中心扩展的变形。在本文中,我们将这些代数中的每个代数中的n = 1个超延迟分类为(3+1) - 维度,直至同构。然后,我们确定了代数品种的非空分支,描述了这些代数的n = 2个超延伸。我们在n = 1个情况下发现了9个同构类别,在n = 2个情况下发现了22个分支。然后,我们简要讨论了这些谎言超级银行的某些应用,包括它们可能用于非相关性超重力和全息图的可能用途。

The Bargmann algebra and centrally-extended Newton-Hooke algebras describe the non-relativistic symmetries of massive particles in flat and curved spacetimes, respectively. These three algebras all arise as deformations of the universal central-extension of the static kinematical Lie algebra. In this paper, we classify the N=1 super-extensions for each of these algebras in (3+1)-dimensions, up to isomorphism. We then identify the non-empty branches of the algebraic variety describing the N=2 super-extensions of these algebras. We find 9 isomorphism classes in the N=1 case and 22 branches in the N=2 case. We then give a brief discussion on some applications of these Lie superalgebras, including their possible uses for non-relativistic supergravity and holography.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源