论文标题

替换为$ 2N $折的旋转对称性的离散平面瓷砖奇数n

Substitution discrete plane tilings with $2n$-fold rotational symmetry for odd n

论文作者

Kari, Jarkko, Lutfalla, Victor H.

论文摘要

我们研究了也是离散平面瓷砖的替代瓷砖,即满足剪切和预测的放松版本。我们证明,带有2n倍旋转对称性的sub rosa取代,用于奇数n的旋转对称性大于5,而卡里和瑞萨南(Kari)和瑞萨南(Rissanen)定义的5个不是离散的平面,因此也不是切割和项目的瓷砖。然后,我们为任何奇数N定义了具有2倍旋转对称性的新平面Rosa取代砖,并表明这些旋转对称性满足离散平面条件。我们认为的瓷砖是边缘到边缘的菱形砖。我们为10倍的情况提供了明确的结构,并为任何奇数n的总体情况提供了一种构造方法。

We study substitution tilings that are also discrete plane tilings, that is, satisfy a relaxed version of cut-and-projection. We prove that the Sub Rosa substitution tilings with a 2n-fold rotational symmetry for odd n greater than 5 defined by Kari and Rissanen are not discrete planes, and therefore not cut-and-project tilings either. We then define new Planar Rosa substitution tilings with a 2n-fold rotational symmetry for any odd n, and show that these satisfy the discrete plane condition. The tilings we consider are edge-to-edge rhombus tilings. We give an explicit construction for the 10-fold case, and provide a construction method for the general case of any odd n.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源