论文标题

无限的切片采样

Unbounded Slice Sampling

论文作者

Mochihashi, Daichi

论文摘要

切片采样是一种有效的马尔可夫链蒙特卡洛算法,可从不正常的密度中采样,并且始终$ 1 $。但是,当采样的变量无限制时,它的“逐步淘汰”启发式作品仅在本地,因此很难统一探索可能的候选人。本文提出了一种简单的变化方法,以切成示例无界变量的样品,等效地等效于[0,1)。

Slice sampling is an efficient Markov Chain Monte Carlo algorithm to sample from an unnormalized density with acceptance ratio always $1$. However, when the variable to sample is unbounded, its "stepping-out" heuristic works only locally, making it difficult to uniformly explore possible candidates. This paper proposes a simple change-of-variable method to slice sample an unbounded variable equivalently from [0,1).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源