论文标题
Hauser-Feshbach的传播对R-Process核合成的不确定性估计:远离稳定性的中子核的统计特性模型的基准远非稳定性
Propagation of Hauser-Feshbach uncertainty estimates to r-process nucleosynthesis: Benchmark of statistical property models for neutron rich nuclei far from stability
论文作者
论文摘要
中子星合并事件GW170817的多通电者观察已通过R过程中最大元素的天体物理起源的争论重新激发了辩论。此类研究的一个关键方面是将天文学观察结果与理论核合成的比较以有意义的方式产生。为了执行逼真的核合成计算,了解微物理细节(例如核反应率)的不确定性与了解天体物理环境建模的不确定性一样必不可少。我们提出了使用Hauser-Feshbach模型从稳定性中远离稳定性的中子捕获率计算的研究。当我们将统计特性的模型推断为R过程网络中的核时,我们提供了计算的可靠性的定量度量。我们选择适合中子捕获的几个水平密度和伽马射线强度模型,并使用它们来计算网络中每个核的反应速率。我们观察到统计特性如何影响理论反应率。然后,用蒙特卡洛技术对速率进行采样,并用于网络计算中,以绘制可能的R过程丰度的范围。结果表明,中子捕获率可能因计算之间的几个数量级而有所不同。现象学模型比半显微镜提供了更平滑的结果。但是,它们不能再现核结构的变化,例如壳封闭。虽然半微观模型可以预测核结构远离稳定性的影响,但尚不清楚这些结果在定量上是准确的。不确定性对R过程产量的影响足以阻碍观察和计算之间的比较。迫切需要在开发更好的伽马强度和水平密度的更好的显微镜模型方面取得进展,以改善R过程模型的保真度。
Multimessenger observations of the neutron star merger event GW170817 have re-energized the debate over the astrophysical origins of the most massive elements via the r-process nucleosynthesis. A key aspect of such studies is comparing astronomical observations to theoretical nucleosynthesis yields in a meaningful way. To perform realistic nucleosynthesis calculations, understanding the uncertainty in microphysics details such as nuclear reaction rates is as essential as understanding uncertainties in modeling the astrophysical environment. We present an investigation of neutron capture rate calculations' uncertainty away from stability using the Hauser-Feshbach model. We provide a quantitative measure of the calculations' dependability when we extrapolate models of statistical properties to nuclei in an r-process network. We select several level density and gamma-ray strength models appropriate for neutron-capture and use them to calculate the reaction rate for each nucleus in the network. We observe how statistical properties affect the theoretical reaction rates. The rates are then sampled with the Monte Carlo technique and used in network calculations to map the range of possible r-process abundances. The results show that neutron capture rates can vary by a couple of orders of magnitude between calculations. Phenomenological models provide smoother results than semi-microscopic. They cannot, however, reproduce nuclear structure changes such as shell closures. While semi-microscopic models predict nuclear structure effects away from stability, it is not clear that these results are quantitatively accurate. The effect of the uncertainty on r-process yields is large enough to impede comparisons between observation and calculations. Progress in developing better microscopic models of gamma strengths and level densities is urgently needed to improve the fidelity of r-process models.