论文标题

Kiu-net:超过生物医学图像和体积分段的卷积架构

KiU-Net: Overcomplete Convolutional Architectures for Biomedical Image and Volumetric Segmentation

论文作者

Valanarasu, Jeya Maria Jose, Sindagi, Vishwanath A., Hacihaliloglu, Ilker, Patel, Vishal M.

论文摘要

大多数用于医疗图像分割的方法在大多数应用程序中都成功使用U-NET或其变体。在对这些基于编码器的方法进行详细分析之后,我们观察到它们在检测较小的结构方面的性能很差,并且无法精确地分割边界区域。当我们深入编码器时,此问题可以归因于接受场大小的增加。对学习高水平功能的额外关注会导致基于U-NET的方法学习有关低水平特征的信息,这对于检测小结构至关重要。为了克服这个问题,我们建议使用过度的卷积架构,在该卷积架构中,我们将输入图像投影到更高的维度中,以便我们限制了接收场的网络深层层。我们为图像分割设计了一个新的体系结构-KIU-net,该结构具有两个分支:(1)一个过度的卷积网络Kite-Net,该卷积网络网络学会捕获输入的细节和准确的边缘,以及(2)U-NET学习高级功能。此外,我们还提出了KIU-NET 3D,这是用于体积分割的3D卷积架构。我们通过在五个不同的数据集上进行实验对KIU-NET进行详细研究,涵盖了超声(US),磁共振成像(MRI),计算机断层扫描(CT),显微镜和眼底图像等各种图像模式。与所有最近的方法相比,所提出的方法具有更好的性能,具有更少的参数和更快的收敛性。此外,我们还证明了基于残留块和密集块的KIU-NET的扩展会导致进一步的性能改善。可以在此处找到Kiu-net的实施:https://github.com/jeya-maria-jose/kiu-net-pytorch

Most methods for medical image segmentation use U-Net or its variants as they have been successful in most of the applications. After a detailed analysis of these "traditional" encoder-decoder based approaches, we observed that they perform poorly in detecting smaller structures and are unable to segment boundary regions precisely. This issue can be attributed to the increase in receptive field size as we go deeper into the encoder. The extra focus on learning high level features causes the U-Net based approaches to learn less information about low-level features which are crucial for detecting small structures. To overcome this issue, we propose using an overcomplete convolutional architecture where we project our input image into a higher dimension such that we constrain the receptive field from increasing in the deep layers of the network. We design a new architecture for image segmentation- KiU-Net which has two branches: (1) an overcomplete convolutional network Kite-Net which learns to capture fine details and accurate edges of the input, and (2) U-Net which learns high level features. Furthermore, we also propose KiU-Net 3D which is a 3D convolutional architecture for volumetric segmentation. We perform a detailed study of KiU-Net by performing experiments on five different datasets covering various image modalities like ultrasound (US), magnetic resonance imaging (MRI), computed tomography (CT), microscopic and fundus images. The proposed method achieves a better performance as compared to all the recent methods with an additional benefit of fewer parameters and faster convergence. Additionally, we also demonstrate that the extensions of KiU-Net based on residual blocks and dense blocks result in further performance improvements. The implementation of KiU-Net can be found here: https://github.com/jeya-maria-jose/KiU-Net-pytorch

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源