论文标题
$ h_p(\ mathbb {t})的无条件基础的唯一性
Uniqueness of unconditional basis of $H_p(\mathbb{T})\oplus\ell_{2}$ and $H_p(\mathbb{T})\oplus\mathcal{T}^{(2)}$ for $0<p<1$
论文作者
论文摘要
本文我们的目标是提高无条件基础独特性主题的艺术状态。为此,我们在一对$(\ Mathbb {x},\ Mathbb {y})$上建立了一般条件每个求和的无条件基础。作为我们方法的应用,我们获得了$ h_p(\ Mathbb {t}^d)\ oplus \ Mathcal \ Mathcal {t}^{(2)} $和$ h_p(\ Mathbb {t}^d) $ d \ in \ mathbb {n} $,具有独特的无条件基础(直至等价和排列)。
Our goal in this paper is to advance the state of the art of the topic of uniqueness of unconditional basis. To that end we establish general conditions on a pair $(\mathbb{X}, \mathbb{Y})$ formed by a quasi-Banach space $\mathbb{X}$ and a Banach space $\mathbb{Y}$ which guarantee that every unconditional basis of their direct sum $\mathbb{X}\oplus\mathbb{Y}$ splits into unconditional bases of each summand. As application of our methods we obtain that, among others, the spaces $H_p(\mathbb{T}^d) \oplus\mathcal{T}^{(2)}$ and $H_p(\mathbb{T}^d)\oplus\ell_2$, for $p\in(0,1)$ and $d\in\mathbb{N}$, have a unique unconditional basis (up to equivalence and permutation).