论文标题

深度学习的学习组成结构:为什么需要逐路

Learning Compositional Structures for Deep Learning: Why Routing-by-agreement is Necessary

论文作者

Venkatraman, Sai Raam, Anand, Ankit, Balasubramanian, S., Sarma, R. Raghunatha

论文摘要

神经网络组成的形式描述直接与其旨在代表对象的形式语法结构有关。这种形式的语法结构指定了组成对象的组件,以及它们允许使用的配置。换句话说,可以将对象描述为其组件的parse-树 - 可以将其视为神经网络中神经元之间建立连接模式的候选结构。我们提供了卷积神经网络和胶囊网络的形式语法描述,该描述显示了胶囊网络如何实施此类分析树结构,而CNN则没有。具体而言,我们表明,动态路由算法中路由系数的熵控制此能力。因此,我们将路由权重的熵作为损失函数,以使胶囊之间更好的组成。我们通过实验显示了具有组成结构的数据,该损失的使用使胶囊网络能够更好地检测组成性的变化。我们的实验表明,随着路由权重的熵增加,检测组成性变化的能力会降低。我们看到,在没有路由的情况下,胶囊网络的性能类似于卷积神经网络,因为这两个模型在检测组合性变化方面的表现不佳。我们的结果表明,路由是胶囊网络的重要组成部分 - 有效地回答了最近质疑其必要性的工作。我们还通过在Smallnorb,Cifar-10和FashionMnist上进行的实验,表明这种损失使胶囊网络模型的准确性与不使用它的模型相当。

A formal description of the compositionality of neural networks is associated directly with the formal grammar-structure of the objects it seeks to represent. This formal grammar-structure specifies the kind of components that make up an object, and also the configurations they are allowed to be in. In other words, objects can be described as a parse-tree of its components -- a structure that can be seen as a candidate for building connection-patterns among neurons in neural networks. We present a formal grammar description of convolutional neural networks and capsule networks that shows how capsule networks can enforce such parse-tree structures, while CNNs do not. Specifically, we show that the entropy of routing coefficients in the dynamic routing algorithm controls this ability. Thus, we introduce the entropy of routing weights as a loss function for better compositionality among capsules. We show by experiments, on data with a compositional structure, that the use of this loss enables capsule networks to better detect changes in compositionality. Our experiments show that as the entropy of the routing weights increases, the ability to detect changes in compositionality reduces. We see that, without routing, capsule networks perform similar to convolutional neural networks in that both these models perform badly at detecting changes in compositionality. Our results indicate that routing is an important part of capsule networks -- effectively answering recent work that has questioned its necessity. We also, by experiments on SmallNORB, CIFAR-10, and FashionMNIST, show that this loss keeps the accuracy of capsule network models comparable to models that do not use it .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源