论文标题

通过探索皮肤病变数据集的偏差来改善病变检测

Improving Lesion Detection by exploring bias on Skin Lesion dataset

论文作者

Trivedi, Anusua, Muppalla, Sreya, Pathak, Shreyaan, Mobasher, Azadeh, Janowski, Pawel, Dodhia, Rahul, Ferres, Juan M. Lavista

论文摘要

由于如何获取和注释它们,所有数据集都包含一些偏见,通常是无意的。这些偏见扭曲了机器学习模型的性能,创建了模型可能不公平利用的虚假相关性,或者相反破坏了模型可以学习的明确相关性。随着深度学习模型的普及,自动化皮肤病变分析开始在早期发现黑色素瘤中起着至关重要的作用。 ISIC档案是最常用的皮肤病变来源之一,用于基于深度学习的工具。 Bissoto等。尝试了不同的基于框架的掩模,并表明深度学习模型可以在输入数据中没有临床意义的信息中对皮肤病变图像进行分类。他们的发现似乎令人困惑,因为消融的区域(随机的矩形盒子)并不重要。病变的形状是皮肤病变临床表征的关键因素。在这种情况下,我们执行了一组实验,以生成形状保护掩码,而不是基于矩形边界框的掩码。经过对这些形状的蒙面图像训练的深度学习模型并不能胜过在没有临床意义的信息的情况下在图像上训练的模型。这强烈建议指导模型的虚假相关性。我们建议使用一般对抗网络(GAN)来减轻基本偏见。

All datasets contain some biases, often unintentional, due to how they were acquired and annotated. These biases distort machine-learning models' performance, creating spurious correlations that the models can unfairly exploit, or, contrarily destroying clear correlations that the models could learn. With the popularity of deep learning models, automated skin lesion analysis is starting to play an essential role in the early detection of Melanoma. The ISIC Archive is one of the most used skin lesion sources to benchmark deep learning-based tools. Bissoto et al. experimented with different bounding-box based masks and showed that deep learning models could classify skin lesion images without clinically meaningful information in the input data. Their findings seem confounding since the ablated regions (random rectangular boxes) are not significant. The shape of the lesion is a crucial factor in the clinical characterization of a skin lesion. In that context, we performed a set of experiments that generate shape-preserving masks instead of rectangular bounding-box based masks. A deep learning model trained on these shape-preserving masked images does not outperform models trained on images without clinically meaningful information. That strongly suggests spurious correlations guiding the models. We propose use of general adversarial network (GAN) to mitigate the underlying bias.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源