论文标题

全球存在和对具有奇异潜力和对数非线性的非Newton过滤方程的解决方案的爆炸

Global existence and blow-up of solutions to a class of non-Newton filtration equations with singular potential and logarithmic nonlinearity

论文作者

Liao, Menglan, Tan, Zhong

论文摘要

在本文中,研究了在初始有限条件下具有奇异潜力和对数非线性的一类非Newton过滤方程。基于潜在的井方法和Hardy-Sobolev的不平等,当初始能源$ J(U_0)$是亚批判性($ J(U_0)<d $),关键($ j(u_0)= d $)时,解决方案的全球存在将得出。当初始能源$ j(u_0)$满足特定条件时,也会获得有限的时间爆破结果。此外,给出了爆炸时间的上限和下限。

In this paper, a class of non-Newton filtration equations with singular potential and logarithmic nonlinearity under initial-boundary condition is investigated. Based on potential well method and Hardy-Sobolev inequality, the global existence of solutions is derived when the initial energy $J(u_0)$ is subcritical($J(u_0)<d$), critical($J(u_0)=d$) with $d$ being the mountain-pass level. Finite time blow-up results are obtained as well when the initial energy $J(u_0)$ satisfies specific conditions. Moreover, the upper and lower bounds of the blow-up time are given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源